

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

This thesis done in cooperation with the MOVES Institute
Approved for public release; distribution is unlimited

NPS AUV WORKBENCH: COLLABORATIVE ENVIRONMENT
FOR AUTONOMOUS UNDERWATER VEHICLES (AUV)

MISSION PLANNING AND 3D VISUALIZATION

by

Lee, Chin Siong

March 2004

 Thesis Advisor: Donald P. Brutzman
 Thesis Co-advisor: Curtis L. Blais
 Thesis Second Readers: John Hiles, Duane Davis

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY

2. REPORT DATE
March 2004

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
NPS AUV Workbench: Collaborative Environment for Mission Planning and 3D
Visualization
6. AUTHOR: Lee, Chin Siong

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME AND ADDRESS
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME AND ADDRESS
National University of Singapore (NUS) and Defence Science Organization
(DSO), Singapore, Office of Naval Research.

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT
The absence of common software platforms for Autonomous Underwater Vehicle (AUV) mission planning and

analysis is an ongoing impediment to collaborative work between research institutions, their partners, and end users. This
thesis details the design and implementation of a distributable application to facilitate AUV mission planning and analysis.
Java-based open-source libraries and a component-based framework provide diverse functionalities. The extensible Markup
Language (XML) is used for data storage and message exchange, Extensible 3D (X3D) Graphics for visualization and XML
Schema-based Binary Compression (XSBC) for data compression. The AUV Workbench provides an intuitive cross-platform-
capable tool with extensibility to provide for future enhancements such as agent-based control, asynchronous reporting and
communication, loss-free message compression and built-in support for mission data archiving.

This thesis also investigates the Jabber instant messaging protocol, showing its suitability for text and file messaging
in a tactical environment. Exemplars show that the XML backbone of this open-source technology can be leveraged to enable
both human and agent messaging with improvements over current systems. Integrated Jabber instant messaging support makes
the NPS AUV Workbench the first custom application supporting XML Tactical Chat (XTC).

 Results demonstrate that the AUV Workbench provides a capable test bed for diverse AUV technologies, assisting in
the development of traditional single-vehicle operations and agent-based multiple-vehicle methodologies. The flexible design
of the Workbench further encourages integration of new extensions to serve operational needs. Exemplars demonstrate how in-
mission and post-mission event monitoring by human operators can be achieved via simple web page, standard clients or
custom instant messaging client. Finally, the AUV Workbench’s potential as a tool in the development of multiple-AUV
tactics and doctrine is discussed.

15. NUMBER OF
PAGES

219

14. SUBJECT TERMS
AUV Workbench, Virtual Environments, Extensible 3D Graphics, X3D, Scalable Vector Graphics,
SVG, Extensible Markup Language, XML, Java, DIS-Java-VRML, Extensible Modeling and
Simulation Framework (XMSF), Extensible Messaging and Presence Protocol (XMPP), Scenario
Authoring and Visualization for Advanced Graphical Environments (SAVAGE), Distributed
Interactive Simulation (DIS)

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

NPS AUV WORKBENCH: COLLABORATIVE ENVIRONMENT FOR
AUTONOMOUS UNDERWATER VEHICLES (AUV) MISSION PLANNING

AND 3D VISUALIZATION

Lee, Chin Siong
Civilian, Defence Science and Technology Agency

B.S. (Computer Engineering), Nanyang Technological University, 1995

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2004

Author: Lee, Chin Siong

Approved by: Don Brutzman
Thesis Advisor

 Curtis L. Blais

Thesis Co-Advisor

 John Hiles
Second Reader

 LCDR Duane T. Davis, USN

Second Reader

 Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The absence of common software platforms for Autonomous Underwater Vehicle

(AUV) mission planning and analysis is an ongoing impediment to collaborative work

between research institutions, their partners, and end users. This thesis details the design

and implementation of a distributable application to facilitate AUV mission planning and

analysis. Java-based open-source libraries and a component-based framework provide

diverse functionalities. The extensible Markup Language (XML) is used for data storage

and message exchange, Extensible 3D (X3D) Graphics for visualization and XML

Schema-based Binary Compression (XSBC) for data compression. The AUV Workbench

provides an intuitive cross-platform-capable tool with extensibility to provide for future

enhancements such as agent-based control, asynchronous reporting and communication,

loss-free message compression and built-in support for mission data archiving.

This thesis also investigates the Jabber instant messaging protocol, showing its

suitability for text and file messaging in a tactical environment. Exemplars show that the

XML backbone of this open-source technology can be leveraged to enable both human

and agent messaging with improvements over current systems. Integrated Jabber instant

messaging support makes the NPS AUV Workbench the first custom application

supporting XML Tactical Chat (XTC).

 Results demonstrate that the AUV Workbench provides a capable testbed for

diverse AUV technologies, assisting in the development of traditional single-vehicle

operations and agent-based multiple-vehicle methodologies. The flexible design of the

Workbench further encourages integration of new extensions to serve operational needs.

Exemplars demonstrate how in-mission and post-mission event monitoring by human

operators can be achieved via simple web page, standard clients or custom instant

messaging client. Finally, the AUV Workbench’s potential as a tool in the development

of multiple-AUV tactics and doctrine is discussed.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PROBLEM STATEMENT ...1
B. OVERVIEW...1
C. MOTIVATION ..2
D. OBJECTIVES ..3
E. THESIS ORGANIZATION..3

II. BACKGROUND AND RELATED WORK ..5
A. INTRODUCTION..5
B. DATA REPRESENTATION AND MANIPULATION USING XML5

1. Removing Ambiguity Through Namespaces6
2. Defining the XML Document Structure ..7
3. Transforming XML Documents ...9

C. 2D AND 3D GRAPHICS REPRESENTATION...10
1. Scalable Vector Graphics (SVG) ..10
2. Virtual Reality Modeling Language (VRML).................................11
3. Extensible 3D (X3D) Graphics..13
4. Xj3D 3D Display Library ..13

D. JABBER AND EXTENSIBLE MESSAGING AND PRESENCE
PROTOCOL (XMPP) ...13

E. OPEN-STANDARD TECHNOLOGIES AND OPEN-SOURCE
SOFTWARE...15

F. PROGRAMMING LANGUAGE AND DEVELOPMENT
ENVIRONMENT...16
1. JBuilder...17
2. Eclipse ...18
3. NetBeans ...20

G. NPS ARIES AUTONOMOUS UNDERWATER VEHICLES (AUV)......23
1. Introduction..23
2. Dimensions and Endurance ..23
3. Propulsion and Motion Control Systems...23
4. Navigation Sensors...24
5. Sonar and Video Sensors...24
6. Vehicle/Operator Communications..24
7. Computer Hardware Architecture...24
8. Computer Software Architecture...25

H. RELATED RESEARCH...26
1. History and Contributors..26

I. SUMMARY ..27

III. AUV WORKBENCH...29
A. INTRODUCTION..29

 viii

B. DESIGN RATIONALE...29
1. Graphical User Interface (GUI) ...29
2. Project Structure..31
3. Source Code and Runtime Package Structure................................31
4. Configuration File..34
5. ANT – JAVA-based Build Tool ..37

C. MISSION PLANNING..41
1. Overview ...41
2. AUV XML-based Mission Control Script41

a. “MissionData” Element..42
b. "UnitsOfMeasure”Element ..42
c. “Mission” Element..43

3. Mission Script Authoring Tools..43
D. EXECUTION AND DYNAMICS PROCESSES ..47

1. Execution ..47
2. Dynamics...48

E. 3D VISUALIZATION ...49
1. Design and Implementation ..49
2. User Interface ...49

F. WEB SERVER...50
1. Design and Implementation ..50
2. User Interface ...51

G. JABBER INSTANT MESSAGING..52
1. Design and Implementation ..52
2. User Interface ...53

H. XTC EVENT MONITOR ...54
1. Design and Implementation ..54
2. User Interface ...56
3. XTC Event Monitoring Configuration ..58
4. How Incoming Events are Handled..59

a. Visual Alert..60
b. Sound Alert..60
c. URL or Hyperlink Alert ..60

5. How Events/Messages are Generated ..62
a. Free-form Text Using Standard Jabber Clients62
b. Structured Text..62

I. APPLICATION TOOLBAR...63
J. STORAGE, NETWORKING AND COMPRESSION...............................66

1. Naming Convention ...66
K. TOOLS AND PRODUCTS ...68

1. Overview ...68
2. Jabber Instant Messaging (IM) Client...69
3. Internet Browser ..71
4. X3D-Edit ...72
5. jEdit...73

 ix

6. AUV Data Server ...75
L. SUMMARY ..77

IV. MESSAGE EXCHANGE TECHNIQUES AND TRANSPORT
PROTOCOLS ..79
A. INTRODUCTION..79
B. COMPRESSION AND DECOMPRESSION USING JAVA.UTIL.ZIP..79

1. Zipping Files ...80
a. Compressing and Archiving Data to a ZIP File80
b. Decompressing and Extracting Data from a ZIP File81
c. ZIP File Properties..82

2. Gzipping Objects..82
3. Java Archive (JAR) Format..83
4. Checksums..84

C. BINARY TO TEXT ENCODING AND DECODING85
1. Brute-Force Approach...85
2. Base-64 Encoding Approach...86
3. Complex and Proprietary Algorithms ...87

D. MESSAGING PROTOCOLS...88
1. Simple Mail Transfer Protocol (SMTP) ..88
2. File Transfer Protocol (FTP) and Secure FTP (SFTP)89
3. HyperText Transport Protocol (HTTP) Get/Post and Secure

Hypertext Transfer Protocol (HTTPS)..89
4. Messaging Queue System (e.g., Java Messaging Service)90
5. Jabber/Chat Using Extensible Messaging and Presence

Protocol (XMPP)..91
E. MESSAGE REPRESENTATION..93

1. Jabber Enhancement Proposals ...93
a. Private Data (JEP-49)...93
b. Extensible HyperText Markup Language (XHTML)

(JEP-71) ..93
2. Embed Hyperlink to Binary Data via Out-of-band (oob)

Messages..94
3. Embed Binary Data in CDATA Section ...96

F. DESIGN AND IMPLEMENTATION ...97
1. Overview ...97
2. Introduction to Jabber Protocol ...98
3. Web-based Jabber Client ..101
4. Standard Jabber Client ...104
5. Customized Jabber Client...106
6. Interior of a Jabber-enabled Agent..109

a. Jabber Communications ...110
b. Message Formatting ...110
c. Message Processing ..111
d. Compression and Decompression ..112
e. Base-64 Encode and Decode ..113

 x

f. XML Parsing ...113
7. Message Generation...113
8. Smack Library ...115

G. BENCHMARKS ..116
H. SUMMARY ..118

V. TASK COLLABORATION USING AGENTS ..121
A. INTRODUCTION..121
B. ENVIRONMENT...122
C. OBJECTS ...123

1. AUV...123
2. Sensor ..124
3. Communications Station ...124
4. Obstacle...125
5. Mission Plan ...125
6. Launching/Pick-up Point...125

D. AGENTS AND ACTORS..125
E. RELATIONSHIPS...129
F. PROCESSES AND OPERATIONS ...129
G. SUMMARY OF LAWS...130
H. AGENT IMPLEMENTATION ..131

1. Concept of Connector-Ticket Pair ...131
I. AGENT-TO-AGENT COMMUNICATIONS...132

1. Agent Identifier ..132
2. Communications ..133
3. Strategy for Data Collection ...133
4. Data Analysis..134

a. Initialization Phase ...134
b. Start/During the Run (AUV Execution)134
c. Possible Strategies...135

J. SUMMARY ..137

VI. CONCLUSIONS AND RECOMMENDATIONS...139
A. INTRODUCTION..139
B. RECOMMENDED FUTURE WORK...139

1. Overview ...139
2. AUV Multi-Agent System Framework ..140
3. Development of Collaborative Sensing Strategy Using

Dissimilar AUVs...141
4. Simulation of Targets/Obstacles...142
5. Simulation of Environmental Conditions143
6. Plug-in Framework..143
7. AUV Mission Manager ..144
8. User Interface Enhancements...144

a. Manipulate Multiple Missions in 2D Mission Planner144
b. Animated Icons in 2D Mission Planner and Mission

Command List ...144

 xi

9. Distributed Robot (Execution) and Virtual Environment
(Dynamics) Processes...145

10. Compression and Error-Correction Algorithms145
11. Mapping Capability in Mission Planner..146

C. SUMMARY ..147

APPENDIX A. ACRONYMS AND ABBREVIATIONS..149

APPENDIX B. LIST OF ARIES AUV-SPECIFIC EXECUTION-LEVEL
COMMANDS ...151
A. INTRODUCTION..151
B. XML-BASED EXECUTION LEVEL COMMANDS151

1. <Depth> Element ...151
2. <EnterTube> Element ...151
3. <FollowLight> Element...152
4. <GpsFix> Element ...152
5. <Heading> Element..152
6. <Help> Element..153
7. <Hover> Element ...153
8. <Lateral> Element ...153
9. <MissionScript> Element ..154
10. <Pause> Element..154
11. <Planes > Element..154
12. <Position> Element ..154
13. <Propeller> Element..155
14. <Quit> Element ..155
15. <RealTime> Element ...155
16. <ResetTime> Element..156
17. <Rotate> Element ..156
18. <Rudder> Element...156
19. <Sonar> Element..157
20. <Standoff> Element ...157
21. <TakeStation> Element...158
22. <Thrusters> Element...159
23. <TimeStep> Element ...159
24. <Trace> Element..159
25. <Wait> Element ...160
26. <Waypoint> Element...160

APPENDIX C. CDROM MATERIAL...161
A. DIRECTORY AND FILE STRUCTURE ...161

1. Documentation ...161
2. AUV Workbench Application...161

B. MAIN APPLICATION ...162
C. MISSION PLANNING..163
D. JABBER INSTANT MESSAGING..165
E. WEB ..166

 xii

F. UTILITIES ...166
G. LIBRARIES..167
H. CONFIGURATION FILE ..168

APPENDIX D. AUV WORKBENCH DEVELOPER AND USER GUIDE169
A. SETUP...169
B. HOW TO RUN IT..169
C. HOW TO COMPILE IT ...170
D. TOOLS AND APPLICATIONS...170
E. FREQUENTLY ASKED QUESTIONS (FAQ) ..170

1. Unable to Start AUV Application...170
F. COMPONENT CHART..171

APPENDIX E. PROCEDURE TO PACKAGE BINARY DATA177

APPENDIX F. GNS.JAVA..185

LIST OF REFERENCES..191

INITIAL DISTRIBUTION LIST ...197

 xiii

LIST OF FIGURES

Figure 1. Sample DTD defining a Waypoint element with two attributes “x” and
“y”. ...8

Figure 2. Sample XSD on Waypoint element. ..8
Figure 3. Relationship of Parsing, Validating and Transforming an XML document. ...10
Figure 4. A simple SVG code snippet...11
Figure 5. Graphical representation of the above SVG code..11
Figure 6. Contents of VRML file for a 1m by 0.5m by 1m blue box.12
Figure 7. Rendering of the 1m by 0.5m by 1m blue box defined in Figure 6 using

Internet Explorer and the Cortona VRML plug-in. User has rotated the
scene for a custom viewpoint location and orientation....................................12

Figure 8. Borland JBuilder 7.0 application user interface running on Windows XP
platform..17

Figure 9. CodeInsight feature running in Borland JBuilder 7.0. This feature displays
context-sensitive pop-up windows to facilitate code completion.18

Figure 10. Eclipse SDK 3.0 Stream Stable Build user interface running on Windows
XP platform..19

Figure 11. CodeAssist feature running in Eclipse. This feature displays context-
sensitive pop-up windows to facilitate code completion.20

Figure 12. NetBeans IDE 3.5 user interface running on Windows XP Platform..............22
Figure 13. Code completion feature running in NetBeans IDE 3.5. This feature

displays context-sensitive pop-up windows to facilitate code completion......22
Figure 14. Relational Behavior Model tri-level architecture hierarchy with level

emphasis and submarine equivalent listed [Holden 1995].25
Figure 15. AUV Workbench application user interface..30
Figure 16. List of modules and libraries required to build the AUV Workbench

application..30
Figure 17. AUV Workbench project directory structure...31
Figure 18. AUV Workbench application (AUVW) Java source and binary directory

structure..31
Figure 19. Overview of AUV Workbench classes. ...32
Figure 20. “Main” module package. ...33
Figure 21. “Util” module package...33
Figure 22. “Web” module package. ..33
Figure 23. “Im” module package. ...33
Figure 24. “Mission” module package. ...34
Figure 25. Sample AUV Workbench configuration file. ..36
Figure 26. AUV Workbench ANT build.xml used to compile and build the

application..40
Figure 27. Output from “ant dist” command running the AUV Workbench

“build.xml” file. ...41
Figure 28. A sample XML-based mission script [after Hawkins 2002].43

 xiv

Figure 29. XML-based mission script display and 2D Mission Planner. The mission
commands are displayed as a list on the left and the positional data are
displayed graphically on the right..44

Figure 30. Right-click popup menu for the 2D Mission Planner. The popup menu
provides the user with additional functionalities (e.g., add a “Waypoint”).45

Figure 31. Select a point and right-click to either “Edit” or “Delete” a waypoint.46
Figure 32. Mission Command Editor showing the Waypoint information.......................46
Figure 33. Mission Command Editor showing the Thruster information.46
Figure 34. Right-click popup menu on the Mission List display.47
Figure 35. 3D Visualization Display displaying AUVInBeachTank scene.50
Figure 36. Web server settings in XML configuration file. ..51
Figure 37. Web server module user interface..52
Figure 38. Jabber settings defined in the AUV Workbench configuration file.................52
Figure 39. User interface to configure instant messaging (IM) settings.54
Figure 40. Sample XHTML message with encoded binary file in CDATA section..........55
Figure 41. Instant Messaging user interface to package and send text and files...............56
Figure 42. Instant Messaging user interface to display list of incoming messages...........57
Figure 43. Instant Messaging user interface to define the criteria to alert the user...........57
Figure 44. Sample EventMonitor stanza specifying the type of Watch Events and their

corresponding Alerts. ...58
Figure 45. WatchEvent quatrain. ...60
Figure 46. A sample alert of type “visual”..60
Figure 47. A sample alert of type “sound”..60
Figure 48. A sample alert of type “url”. ..60
Figure 49. A sample list of applications defined in Application stanzas that can be

invoked...61
Figure 50. Instant messaging event monitoring and alert mechanism process via

standard Jabber client...61
Figure 51. An event monitoring HTML form to capture target type and location

information...63
Figure 52. A floating application toolbar. ...63
Figure 53. A docked application toolbar on the left..64
Figure 54. A sample toolbar application defined in the Application stanza......................65
Figure 55. X3D Naming Convention [X3DHints 2004]. ..67
Figure 56. Splash-screen poster image describing the AUV Workbench, produced by

the author. ..68
Figure 57. Screen-capture button on the Application Toolbar. ...68
Figure 58. Jabber application setting in the AUV Workbench configuration file69
Figure 59. Rhymbox Jabber client main user interface...69
Figure 60. Rhymbox Jabber client “Chat-room” interface..70
Figure 61. Rhymbox Jabber client “Settings” interface. ...70
Figure 62. Rhymbox Jabber client “Console” interface..71
Figure 63. Microsoft Internet Explorer 6.0 browser user interface...................................71
Figure 64. Internet Browser entry in the AUV Workbench configuration file.72

 xv

Figure 65. X3D-Edit Graphical User Interface (GUI) for developing 3D objects and
scenes using X3D...73

Figure 66. X3D-Edit entry in the AUV Workbench configuration file.73
Figure 67. jEdit User Interface running on Windows platform.74
Figure 68. jEdit Plugin Manager. ..75
Figure 69. jEdit entry in the AUV Workbench configuration file.75
Figure 70. ADS data source panel user interface...76
Figure 71. ADS data destination panel user interface..76
Figure 72. ADS-generated VRML scene from AUV data...77
Figure 73. ADS entry in the AUV Workbench configuration file.....................................77
Figure 74. File compression code snippet. ..81
Figure 75. File Decompression code snippet. ...82
Figure 76. Object Compression code snippet..83
Figure 77. Object Decompression code snippet. ...83
Figure 78. Sample Manifest.mf file for Java Archive..84
Figure 79. Base-64 encoding illustrated 3-byte stream converted to four 6-bit data

units..86
Figure 80. Sample XML document with base-64 encoded data in CDATA section.87
Figure 81. Packaging binary data in a Jabber message. ..94
Figure 82. Overview on file transfer using out-of-band (oob) message.95
Figure 83. Sample XML message with encoded binary data..96
Figure 84. Overview of the three approaches to Jabber instant messaging.98
Figure 85. A sample “groupchat” message to “savage” chatroom....................................98
Figure 86. A sample chat message to “auvrobot” Jabber user. ...99
Figure 87. A sample “presence” packet from “auvrobot” to “savage groupchat”

server..99
Figure 88. Data and file transfer via HTTP-Jabber protocol...103
Figure 89. Sample HTML form for posting of data. ...103
Figure 90. Sample HTML form for posting of data and files. ..104
Figure 91. Sample HTML form for Target Events. ..104
Figure 92. Rhymbox Jabber client. ...105
Figure 93. Data exchange using standard Jabber client. ...106
Figure 94. Customized Jabber client user interface to send data and files as Jabber

message. ...107
Figure 95. Customized Jabber client user interface to display list of incoming Jabber

messages. ...107
Figure 96. Customized Jabber client user interface – Event Monitoring Criteria...........108
Figure 97. Data and file transfer via HTTP-Jabber and Jabber protocol.108
Figure 98. Interior of a Jabber-enabled agent..110
Figure 99. Two files are packaged within the Jabber message.111
Figure 100. Binary data, if present, is embedded within the highlighted CDATA

section. ...112
Figure 101. Links to multiple storage locations. ...114
Figure 102. Processing of outgoing binary file data before it is sent out via Jabber

protocol. ...114

 xvi

Figure 103. Processing of incoming encoded binary data via Jabber protocol.115
Figure 104. ASCII Plain-text Files achieved on average 72.09% reduction in size.116
Figure 105. HTML Plain-text Files achieved on average 86.69% reduction in size.117
Figure 106. XML Plain-text Files achieved on average 85.95% reduction in size.117
Figure 107. X3D Plain-text Files achieved on average 82.38% reduction in size.117
Figure 108. VRML Plain-text Files achieved on average 81.23% reduction in size.118
Figure 109. SVG Plain-text Files achieved on average 66.82% reduction in size............118
Figure 110. Agent Boundary. ..122
Figure 111. AUV operating environment..123
Figure 112. Agent Overview. ..126
Figure 113. Connector-Ticket - Packaging and Tagging. ...131
Figure 114. Connector-Ticket Matching. ..132
Figure 115. Agent-to-agent communications using XMPP. ...133
Figure 116. Human and Agent interaction via Jabber chat room......................................133
Figure 117. AUV Agent - Search Map..137
Figure 118. Modular overview of future work..140
Figure 119. Proposed XML-based representation of Mine Target.142
Figure 120. XML-based representation of Plug-in Class..143
Figure 121. Mission Layer Manager in 2D Mission Planner module.144
Figure 122. Main Application User Interface. ..171
Figure 123. 2D Mission Planning and 3D Visualization User Interface...........................172
Figure 124. Execution and Hydro-Dynamics User Interface. ...172
Figure 125. Font Dialog User Interface...173
Figure 126. Application Toolbar. ..173
Figure 127. Customized Jabber Client – Message Settings Module.174
Figure 128. Customized Jabber Client – Message Send Module......................................174
Figure 129. Customized Jabber Client – Message Send Receive.175
Figure 130. Web Server...175
Figure 131. Procedure to encode binary data to XML..179
Figure 132. Procedure to decode binary data to XML..184

 xvii

LIST OF TABLES

Table 1. Description of text-based command for Waypoint orders. Extracted from
mission.script.HELP [Brutzman 1994]..5

Table 2. XML Design Goals (after W3C, 2003)..6
Table 3. Comparison of DTD and XSD...8
Table 4. Open source libraries used in the development of AUV Workbench

application..16
Table 5. A summary of AUV Workbench packages. ..32
Table 6. XML tagset to define the AUV Workbench configuration.37
Table 7. XML Elements and attributes of MissionData element.42
Table 8. XML Elements and attributes of UnitsOfMeasure element.43
Table 9. Details of mouse right-click popup menu items. ...45
Table 10. Sample web server directory structure...51
Table 11. XML tagset defining the web server configuration. ..51
Table 12. Details of web server user interface...52
Table 13. Workbench instant messaging directory structure. ..52
Table 14. XML tagset specifying the Jabber configurations. ..53
Table 15. Details of customized Jabber user interface...54
Table 16. XML tagset to configure XTC event monitoring. ...59
Table 17. Details of Toolbar Buttons...64
Table 18. XML tagset for configuring the toolbar module..65
Table 19. File types and their suffixes. ..66
Table 20. Java Source Code Naming Convention [after JavaCodeConvention 1999]. ...67
Table 21. Classes for File Compression and Decompression..80
Table 22. Classes for Object Compression. ...82
Table 23. Classes for Checksum. ...84
Table 24. Comparison of messaging systems and their protocols.92
Table 25. XML tagset to define the XHTML payload in the Jabber message.97
Table 26. Message packet types and protocol..99
Table 27. “Presence” packet types and protocol..100
Table 28. Comparison of the three approaches..109
Table 29. AUV Attributes..124
Table 30. Sensor Attributes..124
Table 31. Communications Station Attributes...124
Table 32. Obstacle Attributes...125
Table 33. Mission Plan Attributes..125
Table 34. Agent input and actuator suite. ..126
Table 35. Mission script XML tag set..127
Table 36. Agent goal definition. ..129
Table 37. Acronyms and abbreviations..149

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

ACKNOWLEDGMENTS

I would like to thank Don Brutzman for his ideas, in-depth knowledge in the area

of XML, AUV modeling and simulation and opportunities, Curt Blais for his guidance on

agent technology and XML, John Hiles for introducing the concepts of cognitive

blending and LCDR Duane Davis for being a great sounding board and his in-depth

domain knowledge, and most importantly, my patient and loving wife, Joanne who has

been a great source of strength all through this work. Not forgetting our families back

home in Singapore.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. PROBLEM STATEMENT
The lack of common software tools for Autonomous Underwater Vehicle (AUV)

mission planning and analysis is an ongoing impediment to collaborative work between

research institutions, their partners, and end users. Current proprietary software solutions

have a myopic view on the capability of AUVs. Most place too much emphasis on single

and relatively simple AUV operations. A common software development and mission

evaluation platform will not only facilitate modeling and simulation of AUVs, but it will

aid in the introduction of complex multi-agent systems to try out and answer more

challenging questions. Longer-term needs such as the development of AUV concept of

operations and collaborative sensing between vehicles can be achieved.

A common and flexible platform will facilitate the transition from simulation to

actual operations.

B. OVERVIEW
This thesis details the design and implementation of a common platform to

facilitate AUV mission planning, visualization and analysis. The end product is capable

of handling the various phases of a mission. An important component is the definition

and use of a common AUV mission control script. The control script defines the AUV

commands that are similar to the low-level execution commands that are used by the

actual AUV hardware.

Using Java-based open-source libraries for functionality, Extensible Markup

Language (XML) for data storage [Serin 2003] and exchange, and a component-based

framework, the AUV Workbench provides an intuitive cross-platform-capable tool with

extensibility to provide for future enhancements such as agent-based control,

asynchronous reporting and communication, and loss-free message compression. As a

collaboration environment, it is important that communication channels and tools are

2

easily available for developers and users to communicate. Jabber instant messaging is

selected as it is based on open-source Extensible Message and Presence Protocol (XMPP)

[XMPP 2004].

In addition, this thesis investigates the Jabber instant messaging protocol and

discusses its suitability for text and file messaging in a tactical environment. Exemplars

show that the XML backbone of this open-source technology can be leveraged to enable

both human and agent messaging with improvements over current systems.

C. MOTIVATION
One motivating factor is to support the current research efforts at NPS and with

partners such as Singapore Defence Science Organization (DSO). Similar partner

relationships are occurring with other AUV laboratories. A componentized framework

using open-source software and open-standards technologies is presented to support

collaborative development. The ultimate goal of software components is to fuse the use

of different pieces of software into one smoothly operating package. The end product

facilitates collaboration and continued research development between the two research

entities.

A well-designed and well-documented system promotes knowledge sharing and

retention. Ease of use and user interface design is important issues that will determine

whether it gains user acceptance. Usability should not be considered as an afterthought.

Ultimately user acceptance aids the transition of a modeling and simulation (M&S) tool

into a system that meets operational needs.

A further long-term motivation is to develop a common platform that can be

extended to become a Sensor Workbench and also support agent research and

development. Much important work awaits; that is otherwise impossible without such a

dedicated tool. In many respects, the NPS AUV Workbench is the culmination of many

technical threads carrying to fruition that were first initiated as part of the NPS AUV

Underwater Virtual World. [Brutzman 1994]

3

D. OBJECTIVES
The primary focus of this thesis is on the design and implementation of a common

platform for AUV mission planning and analysis through the use of Open-source

software and tools. In addition, this thesis addresses the following research questions:

• What are the open-source tools and open-standards technologies available

to facilitate development of a collaborative platform for AUV mission

planning and visualization?

• What constitutes an AUV XML-based mission control script?

• Can the mission control script be graphically represented?

• How can open-standards technologies be leveraged to design and

implement a message exchange system that can support both human and

machine communications?

• Can Jabber be used for machine-to-machine communications; e.g., for

self-validating agent-to-agent messaging?

• Can binary files be transported via Jabber instant messaging protocol?

• Can Jabber instant messaging together with HTTP, serve as a reliable

means for the transfer of textual and binary data?

E. THESIS ORGANIZATION
This first chapter identifies the purpose and motivation behind conducting this

research and establishes the goals for the thesis. Chapter II discusses similar research

and provides general background information to the concepts and set of tools and

technologies employed in this thesis. Chapter III examines the design and

implementation of the various modules that make up the AUV Workbench application.

Chapter IV discusses the use of Jabber instant messaging protocol for message exchange

of textual and files. It provides an exemplar on how event monitoring can be

implemented. Chapter V analyzes the software design of AUV agents. Chapter VI gives

a summary of the conclusions and recommendations for future work. The future work

section lists eleven specific areas where this thesis can be extended. The appendices

4

present information on the programming source code produced and system installation in

conjunction with this thesis. All source code and model content are provided online and

in Appendix C.

5

II. BACKGROUND AND RELATED WORK

A. INTRODUCTION
This chapter briefly discusses the technologies and tools leveraged in the conduct

of this thesis. An overview on the open-source tools and open-standards technologies

employed is given. This chapter also summarizes pertinent previous work on the current

NPS AUV and its virtual world software. Further explanation and study of the topics may

be found in the list of references at the end of this thesis.

B. DATA REPRESENTATION AND MANIPULATION USING XML
Data is only as good as the way it is packaged. Information is a valuable asset,

but its value depends on its longevity, flexibility, and accessibility. Traditionally, data is

represented in a simple text-based format (see Table 1). The main disadvantage of such

an approach is that it is likely to introduce ambiguity in how the data is captured,

resulting in additional effort to write a robust parser to handle the ambiguity. This parser

has to handle case-sensitivity (“WAYPOINT” is not the same as “Waypoint”) and

potential variations in user input (e.g., “WAYPOINT” and “WAYPOINT-ON” refer to

the same information). This added logic slows down (and may confuse) in-water

processing time.

WAYPOINT #X #Y [#Z] [#rpm]
WAYPOINT-ON #X #Y [#Z] [#rpm]
 Point towards waypoint with coordinates (#X, #Y)
 (depth #Z optional) (speed #rpm optional). You can
 leave waypoint control by ordering course, rudder,
 sliding-mode, rotate or lateral thruster control.

 If speed is < 200 RPM, port & starboard RPMs are
 increased to 400 RPM to ensure waypoint can be
 achieved.

 If in TACTICAL mode, execution reports STABLE when
 waypoint is achieved.

Table 1. Description of text-based command for Waypoint orders. Extracted from
mission.script.HELP [Brutzman 1994].

6

The World Wide Web Consortium’s (W3C’s) XML Working Group developed

Extensible Markup Language (XML) in 1996. XML evolved out of the earlier Standard

Generalized Markup Language (SGML), HyperText Markup Language (HTML), and the

earliest presentation markup language. XML documents contain only data, not

formatting instructions. XML is an open standard and its extensibility allows it to

markup virtually any type of information. XML is a simple, standard way to interchange

structured textual data between applications. It is also readable and writable by humans,

using a simple text editor.

Some examples of XML languages are Extensible HyperText Markup Language

(XHTML), Sensor Markup Language (SensorML) for sensors [SensorML], Defense

Advanced Research Projects Agency (DARPA) Agent Markup Language (DAML) for

agents [DAML], Geography Markup Language to describe geographic information

[GeoML], MathML for mathematics [MathML], and Chemical Markup Language (CML)

[CML]. A list of XML-based data representation can be found at http://www.xml-

acronym-demystifier.org/xmlad.html (Accessed February 2004). The design goals for

XML are shown in Table 2 below.

Point Goal

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs that process XML documents.

5. The number of optional features in XML is to be kept to the absolute minimum, ideally
zero.

6. XML documents should be humanly legible and reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance.

Table 2. XML Design Goals (after W3C, 2003).

1. Removing Ambiguity Through Namespaces

Namespace is a mechanism by which element and attribute names can be assigned

to groups. They provide means for document authors to prevent ambiguity and are most

often used when combining different vocabularies in the same document. Namespace

7

identifiers have to be assigned some kind of unique identifiers. They are, by convention,

assigned to the Uniform Resource Locator (URL) subset of Uniform Resource Identifiers

(URIs), not the more abstract Uniform Resource Names (URNs). However, this is not a

requirement, since the XML parser does not actually look up any information located at

that URL.

2. Defining the XML Document Structure
An XML document can optionally reference a document that defines the

document structure and data type. This document can either be represented as Document

Type Definition (DTD) or a schema. DTDs were originally developed for XML’s

predecessor, SGML. They use a compact syntax and provide document-oriented data

typing. XML DTDs are a subset of those available in SGML, and the rules for using

XML DTDs provide much of the complexity of XML 1.0.

XML Schema is an XML-based alternative to DTD. The XML Schema language

is also referred to as XML Schema Definition (XSD). XSD expresses shared

vocabularies and allows machines to carry out rules made by people. It provides a means

for defining the structure, content and semantics of XML documents [Schema 2004].

Through the use of a schema or DTD, the XML document can be validated (i.e.,

checked for conformity) as it is parsed. If the XML document follows the DTD or

schema, it is valid. If an XML parser can successfully parse an XML document, it means

that the document is syntactically correct (well-formed). Therefore a valid XML

document is also well-formed.

DTDs are not XML documents (See Figure 1). This makes them difficult to

programmatically manipulate. A DTD describes an XML document’s structure but not

the format of the individual elements. In 1999, the W3C began to develop XML

Schemas in response to the growing need for a more advanced format for describing

XML documents. XML Schemas reached recommendation status in May 2001.

<!—Command the vehicle to transit to a specified location. -->
<!ELEMENT Waypoint EMPTY>
<!—List of attributes -->
<!ATTLIST Waypoint x CDATA><!—CDATA indicates character data -->
<!ATTLIST Waypoint y CDATA>

8

Figure 1. Sample DTD defining a Waypoint element with two attributes “x” and “y”.

<xsd:element name=”Waypoint”>
 <xsd:annotation>
 <xsd:appinfo>Command the vehicle to transit to a specified
location. Vehicle will not stop when location reached.</xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name=”x” type=”xsd:decimal” use=”required”/>
 <xsd:attribute name=”y” type=”xsd:decimal” use=”required”/>
 <xsd:attribute name=”z” type=”xsd:decimal” use=”required”/>
 <xsd:attribute name=”rpm” type=”xsd:decimal” use=”optional”/>
 </xsd:complexType>
</xsd:element>

Figure 2. Sample XSD on Waypoint element.

S/N Functionality Document Type Definition XML Schema

1. Syntax Extended Backus Naur form. XML format.

2. Namespaces Not fully supported. Enables the definition of
vocabularies that utilize
namespace declarations.

3. Data Types Text only. No constraint
checking.

Simple or complex with
constraint checking; e.g.,
numbers within a certain range,
positive numbers or dates.

4. Entity Declaration Yes Yes

5. Providing defaults for
attributes

Yes Yes

6. Support embedded
declaration

Yes No

7. Parser support Readily supported by most
parsers.

Supported by a few open-
source parsers (Castor
http://www.castor.org,
accessed on February 2004)

Table 3. Comparison of DTD and XSD.

9

3. Transforming XML Documents
As the name implies, Extensible Stylesheet Language (XSL) is intended to define

the formatting and presentation of XML documents for display. The first proposal for

XSL was dated 21 August 1997 [XSL 2004].

XSL Transformations (XSLT) is a language designed for transforming XML

documents into other XML documents [XSL 2004]. Just as XML was derived from

SGML, XSLT has its origins in an SGML-based standard, Document Style Semantics

and Specification Language (DSSSL). A transformation expressed in XSLT describes

rules for transforming a source tree into a result tree. The transformation is achieved by

associating patterns with templates. A pattern is matched against elements in the source

tree. A template is instantiated to create part of the result tree. The result tree is separate

from the source tree. The structure of the result tree can be completely different from the

structure of the source tree. In constructing the result tree, elements from the source tree

can be filtered and reordered, and arbitrary structure can be added. A transformation

expressed in XSLT is called a stylesheet.

XSLT is designed for use as part of XSL, which is a stylesheet language for

XML. XSL specifies the styling of an XML document by using XSLT to describe how

the document is transformed into another XML document that uses the formatting

vocabulary. XSLT is designed to work independently of XSL. The dominant feature of

XSLT is that it is declarative. It produces an output when a particular pattern (based on a

set of non-sequential template rules) occurs in the input. This is opposed to a procedural

program where the tasks are defined in the order they are supposed to perform. Apache

Xalan is a Java-based open-source XSLT processor [Xalan 2004] that is used in this

thesis.

The basic relationship between an XML document with XSL and XSD is

illustrated in Figure 3.

10

Figure 3. Relationship of Parsing, Validating and Transforming an XML document.

C. 2D AND 3D GRAPHICS REPRESENTATION

1. Scalable Vector Graphics (SVG)
SVG is a language for describing two-dimensional graphics and graphical

applications in XML. It was created by the World Wide Web Consortium (W3C), the

non-profit, industry-wide, open-standards consortium that created HTML and XML,

among other important standards and vocabularies. SVG allows for three types of graphic

objects: vector graphic shapes (e.g., paths consisting of straight lines and curves), images

and text. Graphical objects can be grouped, styled, transformed and composited into

previously rendered objects. Text can be in any XML namespace suitable to the

application, which enhances searchability and accessibility of the SVG graphics. The

feature set includes nested transformations, clipping paths, alpha masks, filter effects,

template objects and extensibility. As an XML grammar, SVG offers all the advantages

of XML. SVG graphics can easily be generated on Web servers "on the fly," using

standard XML tools, many of which are written in the Java programming language

[SVG 2004].

11

SVG drawings are dynamic and interactive. The Document Object Model (DOM)

for SVG, which includes the full XML DOM, allows for straightforward and efficient

vector graphics animation via scripting. A rich set of event handlers such as onmouseover

and onclick can be assigned to any SVG graphical object. Because of its compatibility

and leveraging of other Web standards, features like scripting can be done on SVG

elements and other XML elements from different namespaces simultaneously within the

same Web page.

SVG 1.1 is a W3C Recommendation and forms the core of the current SVG

developments. SVG 1.2 is the specification currently being developed.

<svg width="360" height="120">
 <rect x="0" y="0" width="100%" height="100%" fill="lightgray"/>
 <g id="sampleLogo" transform="translate(5, 5)">
 <rect fill="#ff3366" width="155" height="70"/>
 <image xlink:href="sample.svg" x="15" y="15"
 width="120" height="40" />
 </g>
 <rect fill="#3366ff" x="165" y="5" width="180" height="70"/>
 <rect fill="#FFFF00" x="10" y="80" width="335" height="35"/>

 <g font-family="SunSansCondensed-Heavy" fill="black"
 font-size="20" stroke="white" >
 <text x="20" y="70" stroke="none" >NPS AUV Workbench</text>
 </g>
</svg>

Figure 4. A simple SVG code snippet.

Figure 5. Graphical representation of the above SVG code.

2. Virtual Reality Modeling Language (VRML)
The Virtual Reality Modeling Language (VRML) is am International Standards

Organization (ISO) standard for defining 3D virtual worlds through the use of a

structured text file, such as depicted in Figure 6. The text files are typically small and are

ideal for transmission over the Internet. VRML files typically contain four main types of

components; header, prototypes, shapes and routes. VRML virtual worlds are rendered

12

using specialized viewers that read the VRML text files and render the content defined in

the file, (e.g., ParallelGraphics Cortona VRML Client 4.2 at

http://www.parallelgraphics.com accessed on February 2004). These viewers are

installed as Internet browser plug-ins. There are also several open-source VRML viewers

available on the Internet, such as Xj3D [XJ3D 2004].

#VRML V2.0 utf8
NavigationInfo {
 type ["EXAMINE" "ANY"]
}
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0 0 1
 }
 }
 geometry Box {
 size 1 0.5 1
 }
}

Figure 6. Contents of VRML file for a 1m by 0.5m by 1m blue box.

Figure 7. Rendering of the 1m by 0.5m by 1m blue box defined in Figure 6 using Internet

Explorer and the Cortona VRML plug-in. User has rotated the scene for a custom
viewpoint location and orientation.

13

3. Extensible 3D (X3D) Graphics
X3D Graphics is the next generation of the Virtual Reality Markup Language

1997 (VRML97) 3D graphics format for the Internet. X3D has been developed with an

open-source sample implementation for specification implementation and evaluation

along with support from major industry players in 3D content development for the

Internet. Since the format is XML based, it can also take advantage of the benefits of

XML through the use of XSLT stylesheets to view the same content rendered in

VRML97, HTML or with direct rendering of the XML-based tree structure in an open-

source browser implementation such as Xj3D [XJ3D 2004].

4. Xj3D 3D Display Library
Xj3D is the open-source rendering implementation for the X3D graphics standard

[XJ3D 2004]. It is “a Java-based toolkit developed by Yumetech that allows companies

to rapidly support X3D.”[X3D 2002] The Web3D Consortium has also formed the Java

Rendering Working Group consisting of members from Media Machines Inc. Anaviza

Inc., Sun Microsystems, and Yumetech that are concurrently working on the definition

and implementation of bindings for various common graphical API’s such as OpenGL®

and Direct3D™. Upon completion, this implementation will make the specific graphics

rendering context of X3D graphics agnostic and this less vulnerable to the commercial

“ups and downs” of the market place or consumer popularity.

D. JABBER AND EXTENSIBLE MESSAGING AND PRESENCE
PROTOCOL (XMPP)

Jabber is a set of streaming XML protocols and technologies that enable any two

entities on the Internet to exchange messages, presence, and other structured information

in close to real time. The first Jabber application is an instant messaging (IM) network

that offers functionality similar to legacy IM services such as AIM, ICQ, MSN, and

Yahoo. However, Jabber is more than just IM, and Jabber technologies offer several key

advantages [Jabber 2004]: Jabber protocols are free, open, public, and easily

14

understandable; in addition, multiple implementations exist for clients, servers,

components, and code libraries.

First developed by Jeremie Miller in 1998, Jabber is becoming a stable and

proven piece of technology. The architecture of the Jabber network is similar to email; as

a result, anyone can run their own Jabber server, enabling individuals and organizations

to take control of their IM experience. Robust security using Simple Authentication and

Security Layer (SASL) and Transport Layer Security (TLS) has been built into the core

XMPP specifications.

Using the power of XML namespaces, it is extensible in that anyone can build

custom functionality on top of the core protocols; to maintain interoperability, common

extensions are managed by the Jabber Software Foundation. Jabber-enabled applications

are more than IM. These include network management, content syndication,

collaboration tools, file sharing, gaming, and remote systems monitoring.

With a wide range of companies and open-source projects using the Jabber

protocols to build and deploy real-time applications and services; there is no technology

“locked in” as compared to proprietary tools or technologies.

The Extensible Messaging and Presence Protocol (XMPP) is a general purpose

protocol not necessarily limited to instant messaging and presence [XMPP 2004]. XMPP

is a revision of the communication portion of the widely deployed Jabber protocol.

XMPP is a TCP-based protocol that uses Extensible Markup Language (XML) as the

syntax for its protocol elements. XMPP can be used as a client-to-server protocol as well

as a server-to-server protocol. The base of the protocol exchange is the XML “stream",

effectively a stream of XML data sent from one party to the other which starts with an

XML <stream> tag and ending with an XML </stream> tag. Streams are unidirectional,

so communication between two parties requires two separate streams (though they can

run over the same full-duplex connection). Within the stream, Requests and Responses

are exchanged between the two parties in XML “stanzas”, a portion of the stream that has

semantic content. The document describes the routing of stanzas from machine to

machine through streams. XMPP includes guidelines to ensure that extensions are

possible without conflicts or breaking core interoperability. Lack of conflicts is ensured

15

with use of XML namespaces. Interoperability is ensured with careful layering of stanzas

of known types, on top of the base stream.

The Internet Engineering Task Force (IETF) has formalized the core XML

streaming protocols as an approved instant messaging and presence technology under the

name of XMPP, and the XMPP specifications are moving forward rapidly within the

IETF's standards process (http://www1.ietf.org/mail-archive/ietf-

announce/Current/msg28170.html accessed 29 January 2004)

E. OPEN-STANDARD TECHNOLOGIES AND OPEN-SOURCE
SOFTWARE
Open-source software is freely available for any use, including modification and

redistribution. The first formal statement of the official Open Source definition appeared

in 1997 by Bruce Perens [OSI 2002]. This definition has continued to be refined and

maintained by the Open Source Initiative (OSI), a non-profit corporation. [OSI 2004]

Developers have a say in how open source are designed and are free to use what works

for them, rather than be tied to a particular proprietary package. The plethora of open

standards and open source components has shown that this approach is a viable one.

Open source products and tools are based on the premise that the programming

source code is freely available to anyone who wishes to read, add to, or even modify and

redistribute the computer software code. Thus “free” refers primarily to “freedom to use

and modify”.

The list of open source libraries used in the AUV Workbench application is given

in Table 4.

S/N Library Version Description Library Files

1. Apache Ant 1.6.0 Java-based build tool. ant.jar, optional.jar, xercesImpl.jar,
xml-apis.jar

2. Apache SOAP 2.3.1 Base-64 encoding and
decoding.

soap.jar

3. Apache Xerces 2.5.0 XML parsing. xmlParserAPIs.jar, xml-apis.jar,
xercesImpl.jar

4. Apache Xalan 2.5.0 XML transformation, xalan.jar

5. Batik 1.5.0 A Java based toolkit for apps
that want to use images in

batik-awt-util.jar, batik-bridge.jar,
batik-css.jar, batik-dom.jar, batik-

16

S/N Library Version Description Library Files

the SVG format for viewing,
creation and manipulation.

ext.jar, batik-gvt.jar, batik-
parser.jar, batik-script.jar, batik-
svg-dom.jar, batik-svggen.jar,
batik-swing.jar, batik-util.jar, batik-
xml.jar, js.jar

6. Extensible Java
3D

M8 Display of 3D VRML and X3D
models

aviatrix3d-all.jar, gnu-regexp-
1.0.8.jar, httpclient.jar, j3d-org-
images.jar, j3d-org.jar, Jama.jar,
js.jar, JXInput.jar, uri.jar,
vlc_uri.jar, vrml97.jar, xj3d-all.jar

7. Jivesoftware
SMACK APIs

1.2.1 XMPP communications. smack.jar, smackx.jar.

8. dis-java-vrml - Distributed Interactive
Simulation.

dis-java-vrml.jar

Table 4. Open source libraries used in the development of AUV Workbench application.

F. PROGRAMMING LANGUAGE AND DEVELOPMENT ENVIRONMENT
The Java Programming Language by Sun Microsystems is the primary language

used for this thesis [JDK142]. With Java, numerous commercial and open-source tools,

notably Jakarta Apache at http://jakarta.apache.org (accessed February 2004) are

available.

The choice to use Borland’s JBuilder 7.0 Enterprise (NPS Education Edition) for

development of the AUV Workbench was largely based on the author’s familiarity with

Borland’s Integrated Development Development (IDE) from the use of Borland’s Object

Pascal, Delphi. The edition of Java used is Java 2 Standard Edition (J2SE) JDK1.4.2.

There is no dependency on any particular IDE for development of the NPS AUV

Workbench. The NetBeans and Eclipse IDEs are both open source and good no-cost

alternatives.

Most IDEs provide tools to easily design a user interface and automatically

generate the interface code. This comes at the expense of over-dependence on a

particular IDE and likely to pose problems when the user interface needs to be amended

on another IDE. Therefore the design and implementation of the AUV Workbench

graphical user interface is coded from scratch, instead of using JBuilder’s Graphical User

Interface (GUI) Designer.

17

The following sections provide a brief description on some of the IDEs currently

available, consisting of both commercial (e.g., Borland JBuilder) and open-source tools

such as NetBeans and Eclipse.

1. JBuilder
JBuilder uses one window to perform most of the development functions: editing,

visual designing, navigating, browsing, compiling, debugging, and other operations. This

window is called the AppBrowser, and it contains several panes for performing these

development functions. The tabbed panes that are available in the content pane depend on

what kind of file is selected in the project pane.

Figure 8. Borland JBuilder 7.0 application user interface running on Windows XP platform.

18

Figure 9. CodeInsight feature running in Borland JBuilder 7.0. This feature displays

context-sensitive pop-up windows to facilitate code completion.

2. Eclipse
Eclipse is an open-source software development project dedicated to providing a

robust, full-featured, commercial-quality, industry platform for the development of highly

integrated tools. It is composed of three projects, the Eclipse Project, the Eclipse Tools

Project and the Eclipse Technology Project (http://www.eclipse.org accessed January

2004.). It is composed of three subprojects: Platform, Java Development Tools (JDT),

and Plug-in Development Environment (PDE).

The Eclipse Tools Project provides a focal point for diverse tool builders to

ensure the creation of best of breed tools for the Eclipse Platform. The mission of Eclipse

Tools Project is to foster the creation of a wide variety of tools for the Eclipse Platform.

The Tools project provides single point of coordination for open-source tool developers

in order to minimize overlap and duplication, ensure maximum sharing and creation of

common components, and promote seamless interoperability between diverse types of

tools.

19

The Eclipse Platform is an open extensible IDE. The Eclipse Platform provides

building blocks and a foundation for constructing and running integrated software-

development tools. The Eclipse Platform allows tool builders to independently develop

tools that seamlessly integrate with other people's tools.

The Eclipse SDK (software developer kit) is the consolidation of the components

produced by the three Eclipse Project subprojects (Platform, JDT - Java development

tools, and PDE - Plug-in development environment) into a single download.

Figure 10. Eclipse SDK 3.0 Stream Stable Build user interface running on Windows XP

platform.

20

Figure 11. CodeAssist feature running in Eclipse. This feature displays context-sensitive

pop-up windows to facilitate code completion.

3. NetBeans
The NetBeans platform is an application runtime - a "generic large desktop

application." NetBeans Integrated Development Environment (IDE) comprises the

platform and modules such as an editor, tools for working with source code (e.g., Java

and C++) and version control. The IDE has advanced syntax highlighting and an error

checking code editor that supports Java, C, C++, XML and HTML languages. Some of

the features of the platform are (http://www.netbeans.org accessed January 2004):

• User interface management - Windows, menus, toolbars and other

presentation components are provided by the Platform. Developers write

to a set of abstractions such actions and components, saving time and

producing cleaner, more bug-free code. Custom components and

behaviors can be written, but for most cases this is not needed.

• Data and presentation management - The NetBeans Platform contains a

rich toolset for presentating data to the user and manipulating that data.

21

• The Editor - Available as an extension to the Platform, applications built

on NetBeans can use the NetBeans Editor, a powerful and extensible

toolset for building custom editors.

• Setting management - The NetBeans Filesystems infrastructure abstracts

file-based data. Files may exist locally or remotely, on FTP or CVS

servers or in a database; access to them is transparent to module code that

works with files. The Platform can be extended to support new forms of

storage. Applications built on NetBeans are Internet-ready.

• The Wizard framework - a toolset for easily building extensible, user-

friendly Wizards to guide users through more complex tasks.

• Configuration management - Rather than tediously write code to access

remote data and manage and save user-configurable settings, etc., all of

this is handled by the Platform. Applications consist of the platform and

the logic code important to that application.

• Storage management - An abstraction of file-based data access. "Files" in

the NetBeans paradigm may be local files, or exist remotely, for example,

on an FTP server, CVS repository or in a database. Where this data is

stored is completely transparent to other modules that work with this data.

• Cross-platform - since the Platform is written entirely in the Java

language, applications based on it, by their very nature, will run on any

operating system with a Java 2 compatible (1.3 or greater) JVM.

The IDE has a dynamic code completion feature for the Java Editor that enables

you to type a few characters and then display a list of possible classes, methods,

variables, and so on that can be used to automatically complete the expression.

22

Figure 12. NetBeans IDE 3.5 user interface running on Windows XP Platform

Figure 13. Code completion feature running in NetBeans IDE 3.5. This feature displays

context-sensitive pop-up windows to facilitate code completion.

23

G. NPS ARIES AUTONOMOUS UNDERWATER VEHICLES (AUV)

1. Introduction
The Naval Postgraduate School Center for AUV Research has been building,

operating, and researching autonomous underwater vehicles (AUVs) since 1987. Each

new generation of vehicles have substantially increased operational capabilities and are

much more robust and sophisticated in terms of hardware and computer software. These

vehicles have also moved from operating in swimming pool environments to the open

ocean [Oceans 2000]. The latest NPS vehicle is named Acoustic Radio Interactive

Exploratory Server (ARIES). This vehicle is a student-research test bed for shallow-water

minefield-mapping missions, operating in the literal ocean. Currently the vehicle operates

regularly in Monterey Bay [Grunesien 2002].

2. Dimensions and Endurance
The vehicle weighs 225 Kg and measures approximately 3 m long wide and 0.25

m high. The hull is constructed of 6.35 mm thick type 6061 aluminum and forms the

main pressure vessel that house all electronics, computers and batteries. A flooded

fiberglass nose is used to house the external sensors, key-controlled power “on/off”

switches and status indicators. ARIES is capable of a top speed of 3.5 knots and is

powered by six 12-volt rechargeable lead-acid batteries. Vehicle endurance is

approximately 4 hours at top speed, with 20 hours endurance under “hotel load” only.

The ARIES is primarily designed for shallow-water operations and can operate safely

down to depths of 30 meters [Oceans 2000].

3. Propulsion and Motion Control Systems

Main propulsion is achieved using twin ½ Hp electric drive thrusters located at

the stern. During normal submerged flight, heading and depth are controlled using upper

bow and stern rudders plus a set of bow planes and stern planes. Since the control fins are

ineffective during slow (or zero) forward-speed maneuvers, vertical and lateral cross-

body thrusters are used to control surge, sway, heave, pitch and yaw motions

[Oceans 2000].

24

4. Navigation Sensors
The sensor suite used for navigations includes a 1200 kHz Instruments (RDI)

Navigator Doppler Velocimeter Log (DVL) that also contains a TCM2 magnetic

compass. This instrument measures the vehicle ground speed, altitude, and magnetic

heading. Angular rates and accelerations are measured using a Systron Donner 3-axis

Motion pak IMU. While surfaced, Global Positioning System (GPS) inputs is provided

by a carrierphase differential GPS (DGPS CP) system, available during surfaced

operation to correct any navigational errors accumulated during the submerged phases of

a mission [Oceans 2000].

5. Sonar and Video Sensors
Tritech ST725 scanning sonar and an ST1000 profiling sonar is used for obstacle

avoidance and target acquisition/reacquisition. The sonar heads can scan continuously

through 360 degree of rotation or swept through a predefined angular sector. A fixed-

focus wide-angle video camera is located in the nose and is connected to a DVC recorder.

The computer is interfaced to the recorder that controls on/off and start/stop record

functions. While recording images, data for date, time, vehicle position, depth and

altitude is superimposed on the video image [Oceans 2000].

6. Vehicle/Operator Communications
Radio modems are used for high bandwidth command, control and system

monitoring while the vehicle is deployed and surfaced. While submerged, an acoustic

modem is used for low-bandwidth communications. In the laboratory environment, a 10

Mbps thin-wire Ethernet connection is used for software development and mission data

upload and download [Oceans 2000].

7. Computer Hardware Architecture
The dual-computer system unit measures approximately 28 x 20 x 20 cm. It

consists of two Ampro Little Board 166 MHz Pentium computers with 64 MB RAM,

four serial ports, a network adapter and a 2.5 GB hard drive each. Two DC/DC voltage

25

converters for powering both computer systems and peripherals are integrated into the

computer package. The entire computer system draws a nominal 48 Watts. Both systems

use TCP/IP sockets over thinwire Ethernet for inter-processor communications as well as

connections to an external LAN. The sensor data-collection computer is designated

QNXT. The second is named QNXE and executes the various auto-pilots for servo-level

control [Oceans 2000].

8. Computer Software Architecture
The ARIES AUV uses a tri-level software architecture called the Rational

Behavior Model (RBM). RBM divides the responsibilities into areas of open-ended

strategic planning, soft-real-time tactical analysis and hard-real-time execution-level

control. The RBM architecture is modeled after a manned submarine operational

structure. The correspondence between the three levels and a submarine crew is shown

in Figure 14 below.

Figure 14. Relational Behavior Model tri-level architecture hierarchy with level emphasis

and submarine equivalent listed [Holden 1995].

This figure represents the tri-level software hierarchy with level emphasis and

submarine equivalent listed. The Execution Level assures the interface between hardware

and software. Its tasks are to maintain the physical and operational stability of the

vehicle, to control the individual devices and to provide data to the tactical level. These

tasks are currently performed by on-board host QNXS computer. The Tactical Level

26

provides a software level that interfaces with both the Execution Level and the Strategic

Level. Its chores are to give to the Strategic level indications of vehicle state, completed

tasks and execution level commands. The Tactical level selects the tasks needed to reach

the goal imposed by the Strategic level. It operates in terms of discrete events.

The Strategic Level controls the completion of the mission goals. The mission

specifications are inside this level.

H. RELATED RESEARCH

1. History and Contributors
The AUV Workbench is the result of the combined efforts of several past and

present NPS students and faculty. Adrien Gruneisen and Yann Henriet [Grunesien 2002]

developed the first version of the workbench based on the dissertation research of Don

Brutzman [Brutzman 1994]. It executes AUV missions while providing the user with a

“close-up” view of the vehicle so the vehicle dynamics can be observed.

Doug Horner added support for a non-validating XML-based mission script, an

obstacle avoidance algorithm, and support of mission planning using plain text format.

The original vehicle execution was re-written using Java network communications. Of

note, the XML-based mission script format has been superseded by the Hawkins and Van

Leuvan thesis effort in 2003 [Hawkins 2003] and the Ayala thesis on AUV Java

execution using Distributed Interactive Simulation (DIS) supersedes the older vehicle

execution [Ayala 2002]. The obstacle avoidance module does not compute the path

dynamically. It generates a path based on a list of known obstacles and the preloaded

AUV mission script. The initial efforts were to implement a simple standalone

application for pre-mission visualization and as a quick prototype for proof-of-concept.

Therefore there was no network connectivity (e.g., through IEEE Distributed Interactive

Simulation DIS protocol) and no collaboration tools were introduced.

27

I. SUMMARY
The NPS AUV Workbench integrates years of research work by students and

faculty. To take the AUV Workbench to the next step, it is necessary to streamline these

efforts and employ the best practices of software development. It is through such an

approach that important knowledge can be retained and continued research and

development can be promoted.

28

THIS PAGE INTENTIONALLY LEFT BLANK

29

III. AUV WORKBENCH

A. INTRODUCTION
The AUV Workbench is a common mission planning and analysis tool for AUVs.

It supports physics-based AUV modeling and visualization of vehicle behavior and

sensors in all mission phases: pre-mission, post-mission and ongoing mission

visualization. The AUV workbench consists of four main modules. These modules

communicate with each other either directly or over the network for required interaction.

The individual modules are responsible for four distinct functions: mission execution;

virtual world dynamics modeling and feedback; mission planning and generation; and

2D/3D mission visualization. This chapter provides details regarding the design and

implementation of the modules developed under this thesis, namely mission planning,

XML-based mission script and the general Workbench interface. The topics on mission

execution and virtual world modeling and feedback are also explained. Two supporting

modules are included to facilitate information exchange among human operators as well

as agents.

B. DESIGN RATIONALE

1. Graphical User Interface (GUI)
The Workbench user interface is divided into four distinct sections. Text or

XML-based mission scripts are loaded as part of the Mission panel, in the upper left

pane. Clicking on List and Text tabbed pages toggle between the various modes of

the mission script. The Mission Planner and three-dimensional visualization displays

provides the viewing panel on the upper right pane. The modules, Execution and

Dynamics, to model the robot and its virtual environment are found at the bottom of the

Workbench window. By default, the application toolbar is located on the right side. It

allows the addition of custom applications to be added and launched in a separate

process. Of note, the toolbar is both dock-able and float-able. The user can choose to

dock the toolbar on any side of the Workbench application, or keep it floating.

30

Figure 15. AUV Workbench application user interface.

Figure 16. List of modules and libraries required to build the AUV Workbench application.

31

2. Project Structure
The AUV Workbench is Java-based and was implemented using a componentized

framework. The project structure is shown in Figure 17. At the top level, the core

directories are /bin, /lib, /execution, /dynamics, /Models, /Scripts, /dataweb and /dataim.

The Java packages and classes that make-up the Workbench are kept in /bin directory.

The list of required libraries such Apache Xerces for XML parsing are stored in /lib. The

robot control and virtual environment modules are found in /execution and /dynamics

respectively. To facilitate the user to get started quickly, sample models and mission

scripts are distributed in /Models and /Scripts directories. /dataweb and /dataim store

files that are used by the web server and Jabber instant messaging modules.

Figure 17. AUV Workbench project directory structure.

3. Source Code and Runtime Package Structure
The directories in Figure 18 illustrate the directory structure of the AUV

Workbench Java source and runtime packages.

Figure 18. AUV Workbench application (AUVW) Java source and binary directory

structure.

32

This setup provides ease of development and subsequent maintenance of the

different modules. /main contains the source code of the main user interface and the 3D

visualization. It is responsible for the rendering of the entire user interface including the

placements of the user interfaces for the various modules. The two-dimensional mission

planner module is placed in /mission. Jabber instant messaging and web server modules

are placed in /im and /web respectively. Common utilities and procedures are kept in /util.

S/N Name Description

1. main Main user interface and 3D Visualization module.

2. mission Two-dimensional mission planner module.

3. im Jabber Instant Messaging and XTC Event Monitor modules.

4. web Web server

5. util Common utilities.

Table 5. A summary of AUV Workbench packages.

Figure 19. Overview of AUV Workbench classes.

33

Figure 20. “Main” module package.

Figure 21. “Util” module package.

Figure 22. “Web” module package.

Figure 23. “Im” module package.

34

Figure 24. “Mission” module package.

4. Configuration File
Although the componentized framework works well for developers, day-to-day

users of the Workbench require something simpler so that they can make changes to the

system easily and move on to their actual work. Therefore an XML-based configuration

file has been introduced. This file is located in the same directory as the application

executeable. Adding a new tool is as simple as opening the configuration file,

AUVWorkbenchConfiguration.xml, adding a new entry under the Application stanza

section and re-starting the Workbench. Details on adding new tools to the application

toolbar will be discussed in a subsequent section.

<?xml version="1.0" encoding="UTF-8"?>
<!--
 <head>
 <meta name="filename" content="AUVWorkbenchConfiguration.xml" />
 <meta name="authors" content="Daryl Lee, Duane Davis, Don Brutzman,
US Naval Postgraduate School, Monterey, CA" />
 <meta name="created" content="15 February 2004" />
 <meta name="revised" content="15 February 2004" />
 <meta name="description"
 content="This file contains the AUV Workbench configuration/>
 <meta name="url"
content="C:/auv/Workbench/Scripts/AuvCommandLanguage.xslt" />
 <meta name="document summary" content="A valid document will have a

35

AUVWorkBench command root element. A AUVWorkBench element can contain 1
General, 1 Execution, 1 Hydrodynamics 1 EventMonitor and 1
PluginManager"/>
</head>
 -->
<AUVWorkBench>
 <General>
 <Models>../Models/</Models>
 <Scripts>../Scripts/</Scripts>
 <Application name="Jabber" tooltip="Instant Messaging Client"
image="image/jabber.gif" show="true">
 <Command>C:/Program Files/RhymBox/RhymBox.exe</Command>
 <Command>D:/Program Files/RhymBox/RhymBox.exe</Command>
 <Command>C:/Program Files/IM/RhymBox/RhymBox.exe</Command>
 </Application>
 <Application name="Browse" tooltip="Web Browser"
image="image/browser.gif" show="true" content-type="text/html">
 <Command>C:/Program
Files/mozilla.org/Mozilla/mozilla.exe</Command>
 <Command>D:/Program
Files/mozilla.org/Mozilla/mozilla.exe</Command>
 <Command>C:/Program Files/Internet
Explorer/IEXPLORE.EXE</Command>
 <Command>D:/Program Files/Internet
Explorer/IEXPLORE.EXE</Command>
 </Application>
 <Application name="X3D-Edit" tooltip="X3D Editor"
image="image/x3d.gif" show="true" content-type="model/x3d">
 <Command>C:/www.web3d.org/TaskGroups/x3d/translation/X3D-
Edit.bat</Command>
 <Command>D:/www.web3d.org/TaskGroups/x3d/translation/X3D-
Edit.bat</Command>
 <Command>C:/www.web3d.org/TaskGroups/x3d/translation/X3D-
Edit-English.bat</Command>
 </Application>
 <Application name="JEdit" tooltip="JEdit"
image="image/jedit.gif" show="true" content-type="text/x-java">
 <Command>C:/Program Files/jEdit 4.1/jedit.exe</Command>
 <Command>D:/Program Files/jEdit 4.1/jedit.exe</Command>
 </Application>
 <Application name="ADS" tooltip="AUV Data Server"
image="image/3cubes.gif" show="true">
 <Command>C:/auv/ADS/AuvDataServer.bat</Command>
 <Command>D:/auv/ADS/AuvDataServer.bat</Command>
 </Application>
 <Application name="NotePad" tooltip="Windows Notepad"
image="image/note.gif" show="false" content-type="text/plain,
text/xml">
 <Command>C:/windows/NOTEPAD.EXE</Command>
 </Application>
 <Application name="Picture" tooltip="Windows Fax and Viewer"
image="image/graphics.gif" show="false" content-type="image/bmp,
image/gif">
 <Command>C:/windows/System32/mspaint.exe</Command>
 <Command>D:/windows/System32/mspaint.exe</Command>
 </Application>

36

 <Application name="SVGVRML" tooltip="Display VRML and SVG"
image="image/SVG.gif" show="false" content-type="model/vrml,
image/svg+xml">
 <Command>C:/Program Files/Internet
Explorer/IEXPLORE.EXE</Command>
 <Command>D:/Program Files/Internet
Explorer/IEXPLORE.EXE</Command>
 </Application>
 <Webserver docroot="../dataweb/" port="80" autostart="false"
upload="../dataweb/in/" />
 <Jabber dirIn="../dataim/in/" dirOut="../dataim/out/"
domain="surfaris.cs.nps.navy.mil" port="5222" username="lee"
nickname="WorkBenchDaryl" resource="Work"
jid="savage@conference.xchat.movesinstitute.org"/>
 </General>
 <Execution>
 <ExecutionJava>../Java
execution/classes/Execution</ExecutionJava>
 <ExecutionC>../execution/execution.exe</ExecutionC>
 </Execution>
 <Hydrodynamics>
 <Dynamics>../dynamics/classes/dynamics</Dynamics>
 <AUV number="1" multicastGroup="224.2.181.145"
multicastPort="62040" ttl="15" applicationID="0" siteID="0"
entityID="1" desc="AUV in Beach Tank 1" />
 <AUV number="2" multicastGroup="224.2.181.145"
multicastPort="62040" ttl="15" applicationID="0" siteID="0"
entityID="2" desc="AUV in Beach Tank 2" />
 <AUV number="3" multicastGroup="224.2.181.145"
multicastPort="62040" ttl="15" applicationID="1" siteID="1"
entityID="36" desc="AUV in Beach Tank 3" />
 </Hydrodynamics>
 <EventMonitor>
 <MonitorDefault keywordSubject="mine " keywordBody="nice, mine">
 <WatchEvent expr="^.*(?i)MINE[s|S]? .*[(]{1,2}(\d*),[
]{0,2}(\d*),[]{0,2}(\d*)[).]?+">
 <Alert type="visual" src="image/mine.gif"/>
 <Alert type="sound" src="sound/alert.wav"/>
 <Alert type="url" src="C:/auv/Workbench/doc/index.htm"/>
 </WatchEvent>
 <WatchEvent expr="^.*(?i)SHIP[s|S]? .*[(]{1,2}(\d*),[
]{0,2}(\d*),[]{0,2}(\d*)[).]?+">
 <Alert type="visual" src="image/ship.gif"/>
 </WatchEvent>
 <WatchEvent expr="^.*(?i)LOCATION[s|S]? .*[(]{1,2}(\d*),[
]{0,2}(\d*),[]{0,2}(\d*)[).]?+" alert=""/>
 </MonitorDefault>
 <Monitor jid="savage@conference.xchat.movesinstitute.org"
desc="" datetimeStart="" dateTimeEnd="" keywordSubject=" location"/>
 <Monitor jid="auvrobot@surfaris.cs.nps.navy.mil" desc=""
datetimeStart="" datetimeEnd=""/>
 </EventMonitor>
</AUVWorkBench>

Figure 25. Sample AUV Workbench configuration file.

37

S/N Name Type Description

1. AUVWorkBench Element Root.

2. General Element Application configurations.

3. Models Element Directory location of 3D models.

4. Scripts Element Directory location of mission scripts.

5. Execution Element Not used.

6. ExecutionJava Attribute Location of Java class for execution application.

7. ExecutionC Attribute Location of C program for execution application.

8. Hydrodynamics Element Not used.

9. AUV Element Not used.

10. multicastGroup Attribute Multicast address. Not used.

11. multicastPort Attribute Multicast port no. Not used.

12. ttl Attribute Multicast packet time-to-live. Not used.

13. applicationID Attribute DIS packet application ID. Not used.

14. siteID Attribute DIS packet site ID. Not used.

15. entityID Attribute DIS packet entity ID. Not used.

16. desc Attribute Description. Not used.
Table 6. XML tagset to define the AUV Workbench configuration.

5. ANT – JAVA-based Build Tool
Ant is a Java-based build tool. In theory, it is kind of like Make, without Make's

wrinkles and with the full portability of pure Java code. According to Ant's original

author, James Duncan Davidson, the name is an acronym for "Another Neat Tool". Ant

builds projects specified by an XML build file. The Build file defines Build targets and

Build tasks. For example, a build file might contain separate targets for building a

project and generating Javadoc. The individual targets or the default target for the project

can be executed using the Ant build file (http://ant.apache.org accessed January 2004).

The build.xml for AUV Workbench is given in Figure 26.

<?xml version="1.0" encoding="UTF-8" ?>

<!-- ANT Build Script for the AUV Workbench Project -->
<project name="AUVWorkbench" default="bin" basedir=".">

 <!-- ############# Project Standard Properties ########### -->

38

 <property name="project.name" value="AUVWorkbench" />
 <property name="project.version" value="0.1" />

 <!-- Java source and package directory -->
 <property name="src.dir" value="${basedir}/src" />
 <property name="src.main.dir" value="${src.dir}/main" />
 <property name="src.mission.dir" value="${src.dir}/mission" />
 <property name="src.im.dir" value="${src.dir}/im" />
 <property name="src.web.dir" value="${src.dir}/web" />
 <property name="src.util.dir" value="${src.dir}/util" />

 <!-- Library dependencies -->
 <property name="lib.dir" value="${basedir}/lib" />

 <!-- Java compiled and package directory -->
 <property name="build.dir" value="${basedir}/bin" />
 <property name="build.main.dir" value="${build.dir}/main" />
 <property name="build.mission.dir" value="${build.dir}/mission" />
 <property name="build.im.dir" value="${build.dir}/im" />
 <property name="build.web.dir" value="${build.dir}/web" />
 <property name="build.util.dir" value="${build.dir}/util" />
 <property name="build.image.dir" value="${build.dir}/image" />

 <!-- distribution directory is the same as bin for the moment -->
 <property name="dist.dir" value="${basedir}/bin" />
 <property name="dist.jar.file"
 value="${dist.dir}/${project.name}-${project.version}.jar" />
 <property name="manifest.file"
 value="${build.dir}/META-INF/manifest.mf" />

 <!-- Java documentation directory -->
 <property name="javadocs.dir" value="${basedir}/javadocs" />

 <!-- Javadocs ZIP file -->
 <property name="javadocs.file"
 value="${dist.dir}/${project.name}-${project.version}-javadocs.zip" />

 <!-- include dependent libraries to classpath -->
 <path id="build.classpath">
 <fileset dir="${lib.dir}">
 <include name="*.jar" />
 <include name="*.zip" />
 </fileset>
 </path>
 <!-- ################### Project Build ################### -->
 <!-- ################## "clean" command ################## -->
 <!-- Clean-up existing files and directories -->
 <target name="clean">
 <!-- remove compiled packages -->
 <delete dir="${build.main.dir}" />
 <delete dir="${build.mission.dir}" />
 <delete dir="${build.im.dir}" />
 <delete dir="${build.web.dir}" />
 <delete dir="${build.util.dir}" />

39

 <!-- remove JAR file -->
 <delete file="${dist.jar.file}" />

 <!-- remove JavaDocs -->
 <delete dir="${javadocs.dir}" />
 </target>

 <!-- ################# "prepare" command ################# -->
 <!-- Create the destination directories -->
 <target name="prepare" depends="clean">
 <!-- create packages directory -->
 <mkdir dir="${build.main.dir}" />
 <mkdir dir="${build.mission.dir}" />
 <mkdir dir="${build.im.dir}" />
 <mkdir dir="${build.web.dir}" />
 <mkdir dir="${build.util.dir}" />
 <mkdir dir="${javadocs.dir}" />
 </target>

 <!-- ################# "command" command ################# -->
 <target name="compile" depends="prepare"
 description="compile all the source codes">
 <javac srcdir="${basedir}/src"
 destdir="${build.dir}" deprecation="true">
 <classpath refid="build.classpath" />
 </javac>
 </target>

 <!-- ########### "dist" command to generate JAR ########## -->
 <target name="dist" depends="compile">
 <jar jarfile="${dist.jar.file}"
 basedir="${build.dir}" manifest="${manifest.file}">
 </jar>

 </target>

 <!-- ################# "javadoc" command ################# -->
 <target name="javadoc" depends="compile">
 <javadoc destdir="${javadocs.dir}"
 windowtitle="${project.name}
 Class Library (version ${project.version})"
 overview="${basedir}/src/overview.htm">
 <classpath refid="build.classpath" />
 <packageset dir="${src.dir}" defaultexcludes="yes">
 </packageset>
 </javadoc>

 <!-- create a zip file for the javadocs in
 distribution directory -->
 <zip zipfile="${javadocs.file}">
 <zipfileset dir="${javadocs.dir}"
 prefix="${project.name}-${project.version}-javadocs" />
 </zip>
 </target>

 <!-- ################### "all" command ################### -->
 <target name="all"

40

 depends="dist,javadoc"
 description="Compiles the source, builds the jar files,
 generates the Javadoc HTML pages and creates
 distribution files (.zip).">
 </target>
</project>

Figure 26. AUV Workbench ANT build.xml used to compile and build the application.

Here is a detailed examination of the build.xml file to explain what it does:

• project: includes a project name, the default target to run if none of the

other individual targets are run, and the location of the base directory

(/bin).

• properties: Ant targets and tasks are typically “property-aware”.

Properties are also used to pass parameters to tasks without overriding the

existing properties in the build file. To get the value of a property, use

“${<property name>}” syntax.

• clean target: deletes existing compiled packages’ directories and the

project JAR file.

• prepare target: creates the package directories for the compiled classes.

• compile target: initiates the clean target first (using the depends keyword),

which in turn initiates clean target, then compiles the Java source files and

puts the generated .class files in the build directory.

• dist target: initiates the compile target first and creates a JAR file in that

directory.

• javadoc target: creates the JavaDoc for the project and also generate a

compressed copy of the Java documentations.

• zip target: Compress all the project dependencies into a single ZIP file.

• all target: initiates dist, javadoc and zip targets.

• To activate the individual targets, use “ant <target name>”; e.g., “ant

compile”. By default, Ant looks for “build.xml”. To specify a different

Build file name, use “ant –buildfile <Build filename> <target name>”

41

JAVA_HOME=C:\Application\ j2sdk1.4.2
ANT_HOME=C:\apache-ant-1.6.0
Buildfile: build.xml

clean:
 [delete] Deleting directory C:\Project\darUUV-ant\bin\main
 [delete] Deleting directory C:\Project\darUUV-ant\bin\mission
 [delete] Deleting directory C:\Project\darUUV-ant\bin\im
 [delete] Deleting directory C:\Project\darUUV-ant\bin\web
 [delete] Deleting directory C:\Project\darUUV-ant\bin\util
 [delete] Deleting: C:\Project\darUUV-ant\bin\AUVWorkbench-0.1.jar
 [delete] Deleting directory C:\Project\darUUV-ant\javadocs

prepare:
 [mkdir] Created dir: C:\Project\darUUV-ant\bin\main
 [mkdir] Created dir: C:\Project\darUUV-ant\bin\mission
 [mkdir] Created dir: C:\Project\darUUV-ant\bin\im
 [mkdir] Created dir: C:\Project\darUUV-ant\bin\web
 [mkdir] Created dir: C:\Project\darUUV-ant\bin\util
 [mkdir] Created dir: C:\Project\darUUV-ant\javadocs

compile:
 [javac] Compiling 44 source files to C:\Project\darUUV-ant\bin

dist:

 [jar] Building jar: C:\Project\darUUV-ant\bin\AUVWorkbench-
0.1.jar

BUILD SUCCESSFUL
Total time: 12 seconds

Figure 27. Output from “ant dist” command running the AUV Workbench “build.xml” file.

C. MISSION PLANNING

1. Overview

The AUV Workbench supports both a simple, text-based mission script as well as

the use of XML-based mission scripts. This section presents the details of the XML-

based mission script and the tools to author them.

2. AUV XML-based Mission Control Script
The XML AUV command language is defined using XML schema

[Hawkins 2003]. In general the command language enables the explicit declaration of an

entire mission using execution-level commands, the ad-hoc definition of a mission by

providing individual commands asynchronously (in the form of individual single

command element documents), mission data archiving (telemetry, control orders, sonar

42

data, derived sensor-based data, etc.), and communication between various levels of the

control architecture (execution, tactical, strategic levels) or between multiple autonomous

vehicles, software agents, or human controllers. This mission control language is a

subject of ongoing research and is likely to change significantly in the next version.

A valid document will have a missiondata, mission, report or individual

command root element. A missiondata element can contain up to one mission element

and an arbitrary sequence of individual command, report, telemetry, control order and

sonar data elements. A mission element will contain one or more command elements in

any order.

a. “MissionData” Element
Autonomous vehicle relevant info: mission commands, control orders,

telemetry, sonar results, and/or reports to and from internal or external entities (other

vehicles, agents, or human controllers).

S/N Name Description Format Default Required

1. UnitsOfMeasure Units of measure
selections for
application scaling as
required.

XML element. -

2. vehicleName Name of vehicle. VehicleTypes = {“aries”,
“remus”, “phoenix”, “Los
Angeles SSN”, “SDV-9”}
Enumerated list of
potential vehicle types for
use with this schema.

aries N

3. date Date and time of
mission.

“dd MMM yyyy hh:mm:ss”
format; e.g., “15 January
2004 12:59:59”

- N

Table 7. XML Elements and attributes of MissionData element.

b. "UnitsOfMeasure”Element

S/N Name Description Type Default Required

1. distance Units of measurement
for distance.

DistanceMeasures =
{“feet”, “meters”,
“kilometers”, “miles”}
Enumerated list of possible
distance measurement
units.

meters N

43

2. angle Units of measurement
for angle.

AngleMeasures =
{“radians”, “degrees”,
“rads”}

Enumerated list of possible
angular measurement
units.

degrees N

Table 8. XML Elements and attributes of UnitsOfMeasure element.

c. “Mission” Element
Mission is an ordered set of command elements comprising a vehicle

mission. The list of ARIES AUV-specific Execution-level command elements are given

in Appendix B.

<?xml version="1.0" encoding="utf-8"?>
<MissionData vehicleName="aries" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="C:\auv\Workbench\Scripts\auvCommandLanguage-
xfsp.xsd">
 <Mission>
 <Position x="12" y="55" depth="5"/>
 <Standoff range="3.0"/>
 <Thrusters on="false"/>
 <Waypoint x="120" y="55" z="15"/>
 <Waypoint x="120" y="65" z="15"/>
 <Hover x="12" y="65" heading="270"/>
 <Thrusters on="false"/>
 <Waypoint x="12" y="55" z="5"/>
 <Waypoint x="120" y="55" z="15"/>
 <Waypoint x="12" y="55" z="5"/>
 <Hover/>
 <Wait time="10"/>
 <Depth value="0"/>
 <Wait time="50"/>
 <Thrusters on="false"/>
 <Quit/>
 </Mission>
</MissionData>

Figure 28. A sample XML-based mission script [after Hawkins 2002].

3. Mission Script Authoring Tools
The two-dimensional Mission Planner module provides the means to graphically

and intuitively display and author the XML-based AUV mission scripts. The user is

presented with a two-dimensional planar view of the mission. This module has a mission

canvas whereby a user can easily manipulate positional information pertaining to the

script. Extra effort was made to ensure that it is context-sensitive and is at the same time

44

as intuitive as possible. For example, adding or deleting a waypoint is a simple right

mouse click, double clicking on a point displays the attributes associated to it. Each

mission command has its own set of attributes and its respective user interfaces to

manipulate them.

Additionally, mission points can be edited manually or adjusted by using the drag

feature. Minor, but useful features such as snapping to the grid display were added too.

Figure 29. XML-based mission script display and 2D Mission Planner. The mission

commands are displayed as a list on the left and the positional data are displayed
graphically on the right.

45

Figure 30. Right-click popup menu for the 2D Mission Planner. The popup menu provides

the user with additional functionalities (e.g., add a “Waypoint”).

S/N Name Description

1. Add Waypoint Add a new waypoint.

2. Add Insertion Point Add or update start or insertion point.

3. Bounding Box Defines a rectangular area of interest

4. Clear Clear the mission script.

5. Show Grid Lines Display grid lines (25 pixels apart).

6. Show Text Labels Display the text labels associated to each point.

7. Show Watch Radius Display the watch area circle around each point.

8. Snap to Grid Position or align to the grid lines.

9. Background Color Set the background color.
Table 9. Details of mouse right-click popup menu items.

46

Figure 31. Select a point and right-click to either “Edit” or “Delete” a waypoint.

Figure 32. Mission Command Editor showing the Waypoint information.

Figure 33. Mission Command Editor showing the Thruster information.

A two-dimensional viewer was developed to facilitate mission generation since it

is easier for a user to manipulate in 2D space than 3D space. Depth information can be

displayed alongside each 2D point or through the use of color coding. While the AUV

mission script has a rich set of commands including non-positional ones, only mission

commands that contain positional information are graphically displayed since they

contain x-y coordinates. To address this deficiency, an XML-based Mission List module

was developed to run alongside the 2D Mission Planner. The Mission List module is

47

essentially a list of all mission commands in the current script. The two graphical views

are currently linked dynamically with changes made on either side automatically

reflected on the other.

Figure 34. Right-click popup menu on the Mission List display.

D. EXECUTION AND DYNAMICS PROCESSES

1. Execution
The mission execution module uses the same software that is on board the actual

AUV. Utilization of the actual AUV software facilitates the development of control

equations and algorithms, and enables the realistic rehearsal and fine-tuning of missions

in a benign lab environment prior to attempting their execution in open water. By

querying the mathematical model of the virtual world for telemetry data rather than

onboard sensors, the AUV software can create for itself the illusion that it is operating in

the water and the software will behave accordingly.

The AUV Workbench currently has two versions of the AUV execution software.

The primary differences are the implementation programming language (compiled C

code and Java) and useable command language options. The Java version supports both

simple textual and XML-based mission scripts [Ayala 2002], whereas the compiled C

version only supports text-based scripts. The former is preferred due to its support for

XML-based mission scripts. XML helps to remove any ambiguity in the names of the

commands and provides error-checking through validation.

48

The vehicle behavior can be adapted to other vehicles by adjusting the control

constants and by adding, deleting or changing control equations. The control algorithms

can be tested and visualized with various mission scripts, against known hydrodynamics

models. Any effort to provide precision control for an AUV requires an accurate

estimation of both the vehicle’s physical and hydrodynamic parameters. Here a vehicle

model for controlled steering behaviors was developed and the hydrodynamic parameters

were calculated from actual data obtained from operations. [Johnson 2001]

2. Dynamics
The virtual world dynamics thread implements the AUV hydrodynamics

mathematical model. When passed a telemetry string from the AUV execution thread, the

model is applied, and then a follow-on telemetry string is generated to pass back to the

AUV. Additionally, a Distributed Interactive Simulation (DIS) packet is broadcast over

the network to drive the visualization thread of the workbench (as well as any other DIS-

enabled visualization application that may be on the network). In addition to

hydrodynamics modeling, the dynamics thread contains classes that are utilized to model

the vehicle’s onboard sensors. Sonar data (or that from any other onboard sensor) can

therefore be derived and encapsulated within the telemetry string and DIS packets to

allow for realistic feedback to the AUV execution software, and accurate mission

visualization by the human operator. As with the execution software, the hydrodynamics

mathematical model and sensor models currently in use were developed to model the

vehicles operated by NPS, but can be arbitrarily adapted to other vehicles simply by

modifying the control constants.

The effects of the surrounding environment on a robot vehicle are unique to

underwater domain. Understanding these forces is a key requirement in the development

and control of the vehicle behavior. The dynamics program Java source code is designed

to substitute for the natural environment effects on the AUV. It also provides an estimate

of the AUV behavior in the water by performing a series of calculations using physical

laws. By communicating with the execution code via a network socket, the telemetry data

or state variables of the vehicle are collected. Dynamics apply several equations of

motions, forces, and accelerations to the hydrodynamics model and the data received

49

from the execution code. The data produced by dynamics is then sent back to execution,

where it is analyzed and appropriate action commands are then given to the respective

actuators based on that data. This is a important and difficult part in the real-time

simulation in a virtual world [Ayala 2002].

The 3D visualization algorithms in the dynamics code allow the update of 3D

scenes developed using X3D-Edit. These scenes are viewed through an Internet browser

using a plug-in VRML viewer.

E. 3D VISUALIZATION

1. Design and Implementation
The visualization portion of the workbench contains a 3D viewer that utilized

X3D or VRML models of the AUV and its virtual environment. The 3D viewer is

developed using an open-source 3D library, Xj3D. By reading and interpreting the

incoming DIS packets from network, the viewer automatically animates the vehicle.

Through the 3D display, the user is provided with visual feedback on control settings,

sensor effectiveness and utilization.

2. User Interface
The 3D display module is located in the upper right pane of the application

window. It is on the tabbed page component alongside the 2D mission viewer module.

50

Figure 35. 3D Visualization Display displaying AUVInBeachTank scene.

F. WEB SERVER

1. Design and Implementation
In a collaborative environment, there is always a need to share information. For

example, data such as current position and list of obstacles encountered can be published

and easily accessible to both human operators and other planners who may or may not be

using the Workbench. Dissemination of information via web server is well tested and has

proven to be a stable and efficient solution. One possible way to web-enable the

Workbench is to deploy a full-fledged open-source web server such as Apache Tomcat,

but this approach introduces additional deployment, administrative and maintenance

issues. Therefore a scaled down but fully functional multi-threaded web server has been

incorporated as a module in the AUV Workbench. This allows publishing of information

directly from the Workbench. At the same time, the web server is able to process

uploaded files via HTTP POST. Through the use of HTTP GET and HTTP POST, it is

possible to incorporate message and file sharing capability via HTTP into the

Workbench. It has been proposed that the HTTP file transfer mechanism be used for

“mirroring” of mission data between individual Workbench applications and a central

archival server.

51

S/N Directory name Description

1. dataweb Default location.

2. dataweb/in Location to store incoming data via HTTP POST.

3. dataweb/results Location to store XSBC generated AUV mission
telemetry data.

Table 10. Sample web server directory structure.

The web server settings are stored in the XML-based configuration:

<Webserver docroot="../defaultroot/" port="80"
 autostart="true" upload="../defaultroot/data/"/>

Figure 36. Web server settings in XML configuration file.

S/N Name Type Description

1. Webserver Element Web server parameters.

2. docroot Attribute Web server default directory.

3. Port Attribute Web server port no.

4. autostart Attribute Auto-start web server upon application startup?

5. Upload Attribute Location to store uploaded files.

Table 11. XML tagset defining the web server configuration.

2. User Interface
The web server module is located on the lower pane of the Workbench

application, on the Web Server tabbed page. A set of default values, such as document

default directory and port number, are given. Simply clicking on the Start button invokes

the web server. To test whether the web server is working, open a hyperlink to the host

or machine that the AUV Workbench application is running on, using an Internet

browser; e.g., http://localhost:80/index.htm.

52

Figure 37. Web server module user interface.

S/N Component Description

1. Document Root Web server default directory.

2. Port No. Web server port number; e.g., 8080

3. Upload directory Location to store uploaded files.

4. “Auto-start” checkbox Automatically start the web server upon application start-up?

5. “Start” button Start or stop the web server

Table 12. Details of web server user interface.

G. JABBER INSTANT MESSAGING

1. Design and Implementation
To facilitate near-realtime communications, a customized Java-based Jabber

client is incorporated into the Workbench. The customized client is able to handle simple

plain-text messages and binary file data (e.g., images and XML-based mission script).

The XTC Monitor module is built on top of the customized Jabber client. An open-source

Jabber library, JiveSoftware Smack library is used [JiveSoftware 2003]. Section H covers

the XTC Monitor in a greater depth. Worth noting is that the customized Jabber module

is introduced for XTC Event Monitoring and packaging of a binary file. It is not to

replicate the simple human-to-human text messaging capability found in standard Jabber

clients.

S/N Directory name Description

1. dataim/in Directory location to store incoming decoded XHTML binary data.

2. dataim/out Directory location to store outgoing binary file data.

Table 13. Workbench instant messaging directory structure.

The Jabber settings are stored in the XML-based configuration:

<Jabber dirIn="../dataim/" domain="surfaris.cs.nps.navy.mil"
 port="5222" username="lee" nickname="XJava" resource="Work"
 jid="savage@conference.xchat.movesinstitute.org"/>

Figure 38. Jabber settings defined in the AUV Workbench configuration file

53

S/N Name Type Description

1. Jabber Element Web server parameters.

2.
dirIn Attribute Directory location to store incoming decoded XHTML

binary data.

3. dirOut Attribute Directory location to store outgoing binary file data.

3. domain Attribute Jabber host.

4. port Attribute Jabber port number.

5. username Attribute Login user name

6. nickname Attribute Nickname.

7. resource Attribute Resource.

8. jid Attribute JID or chat-room to listen to upon login.
Table 14. XML tagset specifying the Jabber configurations.

2. User Interface
This module is located on the lower pane of the Workbench application, on the

XTC Monitor tabbed page. The application reads in the Jabber settings under the Jabber

stanza of the configuration file (Figure 25). This set of values is populated in the edit-

boxes within the Settings tabbed page (Figure 39). Once the password is set, clicking on

Connect button establishes a session with the Jabber server specified in the domain edit-

box. At the same time, the client will start to listen for messages in the chat room

(specified in Chatroom edit-box).

54

Figure 39. User interface to configure instant messaging (IM) settings.

S/N Component Description

1. Name User log on name

2. Domain Hostname of Jabber server.

3. Resource User profile.

4. Port no. Port number to be used.

5. Password User log on password.

6. Chat room Chat room to listen to upon log on.

7. Skip first N messages Upon establishing a session, the Jabber server echos the
entire list of messages in that chat room. This setting allows
the customized client to skip some of the old messages.

8. Incoming data directory Location to store decoded binary data.

9. Outgoing data directory Location to store binary data to be packaged and sent out.

Table 15. Details of customized Jabber user interface.

H. XTC EVENT MONITOR

1. Design and Implementation
The XTC Event Monitor module is comprised of three sub-modules. IMSend and

IMReceive are the two basic ones used for instant messaging. IMSend is responsible for

55

the packaging of binary data and sending it out. It is able to handle single or multiple file

attachments. The outgoing message may be addressed to a specific Jabber user (i.e., peer-

to-peer) or a chat-room. IMReceive listens for posted messages. Again, it is listening to

either a particular Jabber user or a chat-room. When there is an incoming message, it

parses it and using event monitor criteria defined in the IMCriteria sub-module, it

generates the appropriate response or alert. IMReceive is able to re-generate packaged

binary files within a Jabber message (i.e., sent by IMSend or similar programs). A

sample XHTML message with encoded binary file data is shown in Figure 40. See

Chapter IV for details on the design and implementation of the message package module.

Next, this section discusses how the incoming events are processed, how alerts are raised

and ways messages can be sent.

Figure 40. Sample XHTML message with encoded binary file in CDATA section.

The third sub-module, IMCriteria is for the definition of event monitoring

criteria. For this thesis, regular expressions are used to define the watch events. Watch

Event determines whether an incoming message matches the regular expression patterns.

If a match is found, respective alerts are raised.

56

2. User Interface
As part of the customized Jabber client, XTC Monitor functionalities are found on

the same XTC Monitor tabbed pages.

Figure 41. Instant Messaging user interface to package and send text and files.

57

Figure 42. Instant Messaging user interface to display list of incoming messages.

Figure 43. Instant Messaging user interface to define the criteria to alert the user.

58

3. XTC Event Monitoring Configuration
The settings for the event monitor module are XML-based and included under the

XTCMonitor stanza of the AUVWorkbench configuration file. There are two types of

event monitors: There is one instance of default event monitor (MonitorDefault) and

multiple instances of Jabber user-specific event monitors (Monitor). There can be one or

more Alert elements associated to a WatchEvent element. These alerts, if enabled (i.e.,

enabled attribute set to true), will be raised in a consecutive order.

<XTCMonitor>
 <MonitorDefault keywordSubject="mine, bomb, torpedo"
keywordBody="nice, mine, bomb, torpedo, location, CVN62, SNN12, DDG51">
 <WatchEvent name="Mine" desc="Look out for Mines"
expr="^.*(?i)MINE[s|S]? .*[(]{1,2}(\d*),[]{0,2}(\d*),[]{0,2}(\d*)[
).]?+">
 <Alert type="visual" src="image/mine.gif" enabled="true"/>
 <Alert type="sound" src="sound/alert.wav" enabled="true"/>
 <Alert type="url" src="C:/auv/Workbench/doc/index.htm"
enabled="false"/>
 </WatchEvent>
 <WatchEvent name="Ship" desc="Look out for Ships"
expr="^.*(?i)SHIP[s|S]? .*[(]{1,2}(\d*),[]{0,2}(\d*),[]{0,2}(\d*)[
).]?+">
 <Alert type="visual" src="image/ship.gif" enabled="true"/>
 </WatchEvent>
 <WatchEvent name="Location" desc="Look out for Locations"
expr="^.*(?i)LOCATION[s|S]? .*[(]{1,2}(\d*),[]{0,2}(\d*),[
]{0,2}(\d*)[).]?+" alert=""/>
 </MonitorDefault>
 <Monitor jid="savage@conference.xchat.movesinstitute.org" desc=""
datetimeStart="" dateTimeEnd="" keywordSubject="mineX, bomb, torpedo"
keywordBody="mineX, bomb, torpedo, location"/>
 <Monitor jid="auvrobot@surfaris.cs.nps.navy.mil" desc=""
datetimeStart="" datetimeEnd="" keywordSubject="urgent, problem"
keywordBody="damage, sinking, surface"/>
</XTCMonitor>

Figure 44. Sample EventMonitor stanza specifying the type of Watch Events and their
corresponding Alerts.

59

S/N Name Type Description

1. EventMonitor Element Root element for Event Monitoring stanza.

2. MonitorDefault Element Default event monitor.

3. WatchEvent
Attribute Watch event to look for. There can be multiple

<WatchEvent> under <MonitorDefault> or <Monitor>
elements.

4. name Attribute Name of watch event.

5. desc Attribute Description of watch event.

6. expr Attribute Regular expression to be match against.

7. Alert
Element Alert to invoke upon a successful match. There can be

multiple <Alert> within a <WatchEvent>.

8. type Attribute Type of alert. An enumeration of “visual”, “sound” and “url”.

9. src
Attribute Source of the alert; e.g., image/mine.gif. This will

determine how the alert rendered; e.g. if it is a visual one, it
is plotted.

10. Monitor Element Event monitor associated to a particular Jabber user ID.

11. jid Attribute Jabber user ID.

12. desc Attribute Description.

13. datetimeStart Attribute When to start this event monitor.

14. datetimeEnd Attribute When to stop this event monitor.
Table 16. XML tagset to configure XTC event monitoring.

4. How Incoming Events are Handled
Upon application startup, the list of default and user-specific event monitors are

loaded. For each of the monitors, there can be one or multiple watch events (in

WatchEvent tag). The check to determine whether a watch event is matched against an

incoming event is via the regular expression defined within the expr attribute. Once

there is a match, the list of available alerts under the WatchEvent element is raised.

There are three types of alerts: “visual”, “sound” and “url”. The alert type is depicted

under the type attribute of the Alert element. In addition, the src attribute defines the

source location of the alert; e.g., image or sound path.

60

<WatchEvent expr="^.*(?i)MINE[s|S]? .*[(]{1,2}(\d*),[]{0,2}(\d*),[
]{0,2}(\d*)[).]?+">
 <Alert type="visual" src="image/mine.gif"/>
 <Alert type="sound" src="sound/event.wav "/>
</WatchEvent>

Figure 45. WatchEvent quatrain.

For this thesis, the following alert mechanisms are implemented:

a. Visual Alert
The 2D Mission Planner module handles this alert. A new target object is

added to the list of targets, maintained by the module. Next the target is plotted on the

2D display using the image specified in the src attribute.

<Alert type="visual" src="image/mine.gif"/>

Figure 46. A sample alert of type “visual”.

b. Sound Alert
This alert is handled within the Event Monitoring module. If the source

path of the alert exists, a sound is played back.

<Alert type="sound" src="sound/alert.wav"/>

Figure 47. A sample alert of type “sound”.

c. URL or Hyperlink Alert
The Event Monitoring module opens an application to display the

hyperlink or file specified in the src attribute. The application is chosen based on the

content type of the hyperlink (e.g., .htm) or file (e.g., .bmp or .txt). For example with the

following alert (Figure 48), it is of type “url” and the source file

(“C:/auv/Workbench/doc/index.htm”) is of “text/html” content type (determined from the

file extension). Based on the “text/html” content type, the module then looks for the

associated application to render it.

<Alert type="url" src="C:/auv/Workbench/doc/index.htm"/>

Figure 48. A sample alert of type “url”.

The list of available applications is defined in the AUV Workbench

configuration file under the Application stanzas. A sample of the Application stanza is

given in Figure 49.

61

<Application name="Browse" tooltip="Web Browser"
 image="image/browser.gif" show="true"
 content-type="text/html">
 <Command>C:/Program Files/mozilla.org/Mozilla/mozilla.exe</Command>
 <Command>C:/Program Files/Internet Explorer/IEXPLORE.EXE</Command>
</ Application >

<Application name="NotePad" tooltip="Windows Notepad"
 image="image/note.gif" show="false"
 content-type="text/plain">
 <Command>C:/windows/NOTEPAD.EXE</Command>
</Application>

<Application name="Picture" tooltip="Windows Fax and Viewer"
 image="image/graphics.gif" show="false"
 content-type="image/bmp, image/gif">
 <Command>C:/windows/System32/mspaint.exe</Command>
</Application>

Figure 49. A sample list of applications defined in Application stanzas that can be invoked.

An overview of the process of event monitoring of instant messages and the triggering of

alerts is given in Figure 50.

Figure 50. Instant messaging event monitoring and alert mechanism process via

standard Jabber client.

62

5. How Events/Messages are Generated

a. Free-form Text Using Standard Jabber Clients
Using a standard Jabber client such as Rhymbox, a human operator keys

in the message “A mine is found at position (100, 100, 5)” and sends it. With free-form

text, the receiving party (i.e., XTC Monitor) needs to extract the necessary pieces of

information from the chatter. For this thesis, a simple sentence parsing module using

Java's Regular Expression Parser was implemented. A more precise and robust

extraction module that utilizes Natural Language Processing can be developed in the

future. This technique is error-prone especially when the operator is under stress. This in

turn leads to additional verification at the software end to ensure that it is tolerable to

minor errors such as missing spaces, characters or misplaced characters.

b. Structured Text
Message generation using a structured format is a preferred approach. The

user is presented with a form (HTML or Java Swing application). This approach

removes the need for a sentence parser and error checking, thus reducing message

processing time. Data from structured text comes formatted and possibly validated at the

server or client end. The receiving party only needs to extract the necessary portions of

data based on a predefined schema. There are various ways that structured text can be

captured:

• Capturing the data in the correct format manually by human

operators. This is a tedious and error-prine process.

• Use of a customized client application to allow capture and

validation of inputs from the operators.

• Use of a web page to allow the operators to key-in the required

information. This method is preferred, as it only requires that there

is access to a web browser and the web page since this will work as

long as the human operator has access to the web page. This

removes the need to deploy customized applications.

63

Figure 51. An event monitoring HTML form to capture target type and location information.

Advantage of using Instant Messaging protocol is that it allows both

human operators and agents to interact in the same environment. Agent-specific data is

stored in the XHTML sections of the message. These are not visible on normal Jabber

clients, but are caught by agents that are listening for them and processed accordingly.

I. APPLICATION TOOLBAR
The application toolbar is highly configurable to allow users and developers alike

to add new applications to the AUV Workbench. The toolbar is both floatable (Figure

52) to increase display real estate on the Workbench as well as dock-able to any side of

the Workbench application. This provides a convenient way for users or developers to

bundle frequently used applications. The capability is achieved through the use of an

XML-based configuration file. The current version of the Workbench has two built-in

features: the “About” dialog and the “Screen Capture” capability (i.e., the first two

toolbar buttons). A sample application toolbar is seen below:

Figure 52. A floating application toolbar.

64

Figure 53. A docked application toolbar on the left.

S/N Item Type Description

1. About Built-in “About” dialog.

2. Screen-shot Built-in Perform a screen capture.

3. Jabber External Standard Jabber client.

4. Browse External Internet browser.

5. X3D-Edit External X3D Graphics Editor.

6. jEdit External Open-source Java Editor.

7. ADS External AUV Data Server.

Table 17. Details of Toolbar Buttons.

The XML-based configuration file is human-readable and nicely partitioned to

allow the user to add or remove applications easily. The procedures to add a new

application are given below:

• Locate and open the configuration file; e.g., AUVWorkbenchConfig.xml.

• Go to the section where the Application tags are defined.

• Make a copy of an existing Application set.

65

• Make the necessary changes to the attributes; e.g., name is the name that

appears in the toolbar button, tooltip is the hint and image defines the

location of the toolbar button image.

• Add the file types that this application can handle under content-type

attribute. Set show attribute to “true” to display in toolbar.

• The param attribute defines the parameter to be passed into the application

upon its startup; e.g., a hyperlink to be a web-page for a Internet browser

application.

• Next add Command elements. These define the actual locations of the

application. Upon clicking on the particular toolbar button, the AUV

Workbench tries to look for the application from the possible list of

Command tags provided. Once found, the application is invoked.

<Application name="Browse" tooltip="Web Browser"
image="image/browser.gif" show="true" content-type="text/html"
param="intranet.nps.navy.mil">
 <Command>C:/Program Files/mozilla.org/Mozilla/mozilla.exe</Command>
 <Command>C:/Program Files/Internet Explorer/IEXPLORE.EXE</Command>
</Application>

Figure 54. A sample toolbar application defined in the Application stanza.

S/N Name Type Description

1. Application Element Application to be invoked from toolbar.

2. name Attribute Name of application.

3. tooltip Attribute Button tooltip on toolbar.

4.
show Attribute Boolean value (true or false). To display in the toolbar or

not?

5.
content-type Attribute File types that this application can handle. Delimited by

commas; e.g., image/bmp, image/gif

6.
param Attribute Parameter to be passed into application upon

invocation; e.g., a hyperlink to a web-page.

7. Image Attribute Location of image icon on toolbar.

8.
Command Element Command to invoke the application. There can be

multiple <Command> associated to an application.
Table 18. XML tagset for configuring the toolbar module.

66

J. STORAGE, NETWORKING AND COMPRESSION

1. Naming Convention
Code conventions are important to programmers since 80% of the lifetime cost of

a piece of software goes to maintenance. Software is hardly maintained for its whole life

by the original author. Code conventions improve the readability of the software,

allowing engineers to understand new code more quickly and thoroughly.

S/N File Type Suffix

1. Java Source Code .java

2. Java Bytecode .class

3. VRML .vrml

4. X3D .x3d

Table 19. File types and their suffixes.

Naming conventions make programs more understandable by making them easier

to read. They can also give information about the function of the identifier-for example,

whether it's a constant, package, or class-which can be helpful in understanding the code.

S/N Identifier Type Rules for Naming Examples

1. Packages The prefix of a unique package name is
always written in all-lowercase ASCII
letters and should be one of the top-
level domain names, currently com, edu,
gov, mil, net, org, or one of the English
two-letter codes identifying countries as
specified in ISO Standard 3166, 1981.
Subsequent components of the package
name vary according to an
organization's own internal naming
conventions. Such conventions might
specify that certain directory name
components be division, department,
project, machine, or login names.

org.w3c.dom.*

javax.xml.parsers.*

2. Classes Class names should be nouns, in mixed
case with the first letter of each internal
word capitalized. Try to keep your class
names simple and descriptive. Use
whole words-avoid acronyms and
abbreviations (unless the abbreviation is
much more widely used than the long
form, such as URL or HTML).

class WatchEvent;
class Monitor;

3. Interfaces Interface names should be capitalized
like class names.

interface RasterDelegate;
interface Storing;

4. Methods Methods should be verbs, in mixed case
with the first letter lowercase, with the
first letter of each internal word

run();
runApp();
getStatus();

67

S/N Identifier Type Rules for Naming Examples

capitalized.

5. Variables Except for variables, all instance, class,
and class constants are in mixed case
with a lowercase first letter. Internal
words start with capital letters. Variable
names should not start with underscore
_ or dollar sign $ characters, even
though both are allowed.

Variable names should be short yet
meaningful. The choice of a variable
name should be mnemonic- that is,
designed to indicate to the casual
observer the intent of its use. One-
character variable names should be
avoided except for temporary
"throwaway" variables. Common names
for temporary variables are i, j, k, m, and
n for integers; c, d, and e for characters.

Int i;
char c;
float iSpeed;

6. Constants The names of variables declared class
constants and of ANSI constants should
be all uppercase with words separated
by underscores ("_"). (ANSI constants
should be avoided, for ease of
debugging.)

static final int FRM_WIDTH = 400;

static final int MAX_WIDTH = 999;

static final String HTTP_Accept =
"Accept:"

Table 20. Java Source Code Naming Convention [after JavaCodeConvention 1999].

S/N Item

1. CamelCaseNaming: capitalize each word, never use abbreviations, strive for clarity, and be
brief but complete.

2. Ensure consistent capitalization throughout. Of note: Windows systems are not case sensitive,
but http servers are. Thus mismatched capitalization can hide target files, and this error only is
revealed when placed on a server.

3. Naming conventions apply to .x3d files, image files, and Prototypes. It is also a good idea to
follow them for DEF/USE names.

4. startWithLowerCaseLetter when defining field names for Prototypes and Scripts. This approach
matches the node and field naming conventions in the X3D Specification.
When multiple files pertain to a single entity, start with the same name so that they will
alphabetize adjacent to each other in the catalog and the directory listings. Examples:
WaypointInterpolatorPrototype.x3d WaypointInterpolatorExample.x3d
WaypointInterpolatorExample.png

5. Good choice of directory & subdirectory names can help keep scene names terse.

Figure 55. X3D Naming Convention [X3DHints 2004].

68

K. TOOLS AND PRODUCTS

1. Overview
This section provides a brief description on the applications that are bundled with

the current version of AUV Workbench. There are two built-in functionalities in the

Workbench’s application toolbar, namely the About and Screenshot buttons. As the name

implies, the About button pops up an image that describes the AUV Workbench. The

image can be easily changed by replacing the image named SplashScreen.jpg in the

/image subdirectory. As a collaboration tool, there is always a need to share the current

picture in the AUV Workbench. This may include a view of the mission script and the

3D view of the environment. Thus a fast one-button click screen-capture capability has

been added to the Workbench.

Figure 56. Splash-screen poster image describing the AUV Workbench, produced by the

author.

Figure 57. Screen-capture button on the Application Toolbar.

69

2. Jabber Instant Messaging (IM) Client
A useful tool to facilitate near-real time text messaging between human operators

is an Instant Messaging (IM) client. Through the Jabber client, a developer can log onto

a AUV Workbench chat-room and post questions or answers to fellow developers.

Similarly, human operators are able to use the Jabber client to post mission related

information (e.g., location of a mine). All messages posted via the Jabber clients can be

logged on the Jabber server. This is useful for post-mission analysis by operational users

or consolidation of a trouble-shooting guide for developers.

<Application name="Jabber"
 tooltip="Instant Messaging Client" image="image/jabber.gif">
 <Command>C:/Program Files/RhymBox/RhymBox.exe</Command>
 <Command>D:/Program Files/RhymBox/RhymBox.exe</Command>
 <Command>C:/Program Files/IM/RhymBox/RhymBox.exe</Command>
</Application>

Figure 58. Jabber application setting in the AUV Workbench configuration file

RhymBox is a Jabber client for instant messaging. The Jabber network employs a

distributed and secure infrastructure. The Jabber protocol is based on the IETF supported

XMPP. Jabber is also linked to legacy services (e.g., Yahoo!, MSN, AIM, ICQ, etc).

Figure 59. Rhymbox Jabber client main user interface.

70

Figure 60. Rhymbox Jabber client “Chat-room” interface.

Figure 61. Rhymbox Jabber client “Settings” interface.

71

Figure 62. Rhymbox Jabber client “Console” interface.

3. Internet Browser
One of the essential tools required in a collaboration environment is an Internet

Browser. The browser allows both users and developers to access the World Wide Web

to find information.

Figure 63. Microsoft Internet Explorer 6.0 browser user interface.

Once the “Browser” button is clicked, the application looks for the first available

browser through the list of possible browser applications, i.e., defined in the Command

72

stanza. A default web-page can be specified using the param attribute. This allows users

to be directed to the relevant web-page (e.g., AUV Workbench development) upon

browser startup.

<Application name="Browse" tooltip="Web Browser"
 image="image/browser.gif"
 show="true" content-type="text/html"
 param="intranet.nps.navy.mil">
 <Command>C:/Program Files/mozilla.org/Mozilla/mozilla.exe</Command>
 <Command>D:/Program Files/mozilla.org/Mozilla/mozilla.exe</Command>
 <Command>C:/Program Files/Internet Explorer/IEXPLORE.EXE</Command>
 <Command>D:/Program Files/Internet Explorer/IEXPLORE.EXE</Command>
</Application>

Figure 64. Internet Browser entry in the AUV Workbench configuration file.

4. X3D-Edit
X3D-Edit is a graphics file editor for Extensible 3D (X3D) Graphics that enables

simple error-free editing, authoring and validation of X3D or VRML scene-graph files.

Context-sensitive tooltips provide concise summaries of each VRML node and attribute.

These tooltips simplify authoring and improve understanding for novice and expert users

alike.

X3D-Edit uses the X3D 3.0 tagset defined by the X3D 3.0 Document Type

Definition (DTD) in combination with Sun's Java, IBM's Xeena XML editor, and editor

profile configuration files. More information on X3D-Edit can be found at

http://www.web3d.org/x3d/content/README.X3D-Edit.html.

73

Figure 65. X3D-Edit Graphical User Interface (GUI) for developing 3D objects and scenes

using X3D.

<Application name="X3D-Edit"
 tooltip="X3D Editor" image="image/x3d.gif">
 <Command>C:/www.web3d.org/TaskGroups/x3d/translation/X3D-Edit.bat
 </Command>
 <Command>D:/www.web3d.org/TaskGroups/x3d/translation/X3D-Edit.bat
 </Command>
</Application>

Figure 66. X3D-Edit entry in the AUV Workbench configuration file.

5. jEdit

jEdit is a cross-platform programmer's text editor written in Java, being developed

by Slava Pestov and others. It is available online at http://www.jedit.org. It has an easy to

use interface that resembles that of many other Windows and MacOS text editors. It is

also highly customizable, and contains a “plugin” architecture that allows its features to

be extended by additional programs.

74

jEdit contains a large assortment of features for manipulating source code,

markup text, and other text files. As a programmer's text editor, it also has many features

to help programmers manage their projects and work with other programming tools.

Figure 67. jEdit User Interface running on Windows platform.

Text editing can be different on different operating systems (Carriage Return

versus Carriage Return-Line Feed differences), and also some default text editors are

notoriously poor (e.g. Windows Notepad), jEdit is bundled with the NPS AUV

Workbench. This tool ensures that users can perform simple editing tasks on

configuration and output files, thus simplifying use and remote debugging support.

A plugin is an application that is designed to work with jEdit by providing

additional features that can be used from within the main program. Often the plugin will

provide a visible user interface in a window that can be docked to jEdit's main view

window. There are currently over 60 publicly available plugins that provide such

services as a Java source code browser, a command-line shell, templated text insertion,

and source code project management. They can be downloaded, installed, and kept

current from within jEdit's “Plugin Manager”.

75

Figure 68. jEdit Plugin Manager.

<Application name="JEdit" tooltip="JEdit" image="image/jedit.gif">
 <Command>C:/Program Files/jEdit 4.1/jedit.exe</Command>
 <Command>D:/Program Files/jEdit 4.1/jedit.exe</Command>
</Application>

Figure 69. jEdit entry in the AUV Workbench configuration file.

The jEdit homepage, located at http://www.jedit.org (Accessed on 28 January

2004) contains the latest version of jEdit, along with plugin downloads. There is also a

user-oriented site, http://community.jedit.org (Accessed on 28 January 2004).

6. AUV Data Server
The NPS AUV Data Server (ADS) is a tool for post-mission analysis. It is able to

read the actual AUV telemetry data from several different AUV sources and generate a

3D view of the mission in VRML or X3D. ADS has processed data retrieved from the

Woods Hole Oceanographic Institution (WHOI), REMUS, Florida Atlantic University

Ocean Explorer (OEX), and NPS ARIES AUVs. ADS parses robot telemetry as well as

mission asset (track), bathymetry and contact reports. These data files are converted into

Message Transfer Format (MTF) message format and imported into Mine Warfare

Environmental Decision Aids Library (MEDAL). The MEDAL format is used by the

US Navy to evaluate asset positions, mine-like contacts, snipped images of those contacts

identified as mines and bathymetry maps. It provides a network message interface to

GCCS MEDAL systems and also produces X3D mission visualizations.

76

Figure 70. ADS data source panel user interface.

Figure 71. ADS data destination panel user interface.

77

Figure 72. ADS-generated VRML scene from AUV data.

<Application name="ADS" tooltip="AUV Data Server"
 image="image/3cubes.gif" show="true">
 <Command>C:/auv/ADS/AuvDataServer.bat</Command>
 <Command>D:/auv/ADS/AuvDataServer.bat</Command>
</Application>

Figure 73. ADS entry in the AUV Workbench configuration file.

L. SUMMARY
The NPS AUV Workbench has integrated years of work by students and faculty

to form a stable code base whereby continued research and development can be

supported. The flexibility of the Workbench has made it simple enough for day-to-day

users to get started, and at the same time allowed developers to add new tools and

modules with ease. During the course of this thesis, two new modules were added. One

supports Recursive Ray Acoustics (RRA) visualization and was by LT Scott Rosetti,

USN The other module supports the compression of mission data using XML Schema-

based Binary Compression (XSBC) [Serin 2003] created by LCDR Duane Davis, USN,

on.

78

THIS PAGE INTENTIONALLY LEFT BLANK

79

IV. MESSAGE EXCHANGE TECHNIQUES AND
TRANSPORT PROTOCOLS

A. INTRODUCTION
The major advantages of XML for interoperability of data are its extensibility and

its ability to represent all forms of data, including graphics such as Virtual Reality

Modeling Language, VRML or Extensible 3D Graphics (X3D) in text format. As systems

get more complex, the need to transfer binary data as part of the XML document arises.

This chapter presents possible ways to efficiently package and transport both textual and

binary XML-based data via Extensible Messaging and Presence Protocol (XMPP). In

addition, the design and technical implementations of possible applications using this

data exchange technique are discussed.

B. COMPRESSION AND DECOMPRESSION USING JAVA.UTIL.ZIP

Compression and decompression are often applied to data to reduce network

traffic during transportation and improve the performance of client/server applications.

Likely candidates for applying compression and decompression are text-based files such

as Scalable Vector Graphics (SVG), VRML and X3D, along with uncompressed image

formats, for example 24-bit image files.

This section presents a brief introduction to data compression and decompression,

and shows how to compress and decompress data (in physical files and objects)

efficiently and conveniently from within Java applications using the java.util.zip package.

While it is possible to compress and decompress data using tools such as WinZip,

gzip, and Java ARchive (JAR), these tools are used as standalone applications. It is

possible to invoke these tools as separate applications from within a Java application, but

this is not a portable, straightforward or efficient approach. Drawbacks of launching

compression applications are especially problematic if data needs to be compressed and

decompressed on the fly.

The java.util.zip package for zip-compatible data compression provides classes

to read, create, and modify ZIP and GZIP file formats. The package also provides utility

classes for computing checksums of arbitrary input streams that can be used to validate

80

input data. This package provides one interface, fourteen classes, and two exception

classes. For file manipulations, there are three main classes for the manipulation of

objects and two classes for data streams.

1. Zipping Files
The java.util.zip package provides classes for data compression and

decompression. The main classes are ZipInputStream for reading ZIP files and

ZipOutputStream for writing ZIP files. The ZipInputStream class reads ZIP files

sequentially, whereas the class ZipFile reads the contents of a ZIP file using a random

access file internally so that the entries of the ZIP file do not have to be read sequentially.

S/N Class Type Description

1. ZipEntry Class Represents a ZIP file entry

2. ZipFile Class Used to read entries from a ZIP file

3. ZipInputStream Class An input stream filter for reading files in the ZIP file format

4. ZipOutputStream Class An input stream filter for writing files to the ZIP file format

Table 21. Classes for File Compression and Decompression.

a. Compressing and Archiving Data to a ZIP File
The ZipOutputStream can be used to compress data to a ZIP file. The

ZipOutputStream writes data to an output stream in a ZIP format. A sample procedure is

given below.
import java.io.*;
import java.util.zip.*;
public class ZipStreamCS {
 static final int BUFFER = 2048;
 public static void main (String argv[]) {
 try {
 BufferedInputStream origin = null;
 FileOutputStream dest = new
 FileOutputStream("ZipStreamCS.zip");
 CheckedOutputStream checksum = new
 CheckedOutputStream(dest, new Adler32());
 ZipOutputStream out = new
 ZipOutputStream(new
 BufferedOutputStream(checksum));

 byte data[] = new byte[BUFFER];

 // get a list of files from current directory
 File f = new File(".");

 // list of files to be zipped

81

 String files[] = {"sample.bmp", "links.txt"};
 // or retrieve all files in current directory, f.list();

 for (int i=0; i<files.length; i++) {
 System.out.println("Adding: "+ files[i]);
 FileInputStream fi = new
 FileInputStream(files[i]);
 origin = new BufferedInputStream(fi, BUFFER);
 ZipEntry entry = new ZipEntry(files[i]);
 out.putNextEntry(entry);
 int count;
 while((count = origin.read(data, 0, BUFFER)) != -1) {
 out.write(data, 0, count);
 }
 origin.close();
 }
 out.close();
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
} // ZipStreamCS

Figure 74. File compression code snippet.

b. Decompressing and Extracting Data from a ZIP File
The java.util.zip package provides classes for data compression and

decompression. The java.util.zip package provides a ZipInputStream class for reading

ZIP files. Below is the sample code to perform decompression:
import java.io.*;
import java.util.zip.*;

public class UnZipStreamCS {
 public static void main (String argv[]) {
 try {
 final int BUFFER = 2048;
 BufferedOutputStream dest = null;
 FileInputStream fis = new
 FileInputStream(argv[0]);
 CheckedInputStream checksum = new
 CheckedInputStream(fis, new Adler32());
 ZipInputStream zis = new
 ZipInputStream(new
 BufferedInputStream(checksum));
 ZipEntry entry;
 while((entry = zis.getNextEntry()) != null) {
 System.out.println("Extracting: " +entry);
 int count;
 byte data[] = new byte[BUFFER];

 // write the files to the disk
 FileOutputStream fos = new
 FileOutputStream(entry.getName());

82

 dest = new BufferedOutputStream(fos, BUFFER);
 while ((count = zis.read(data, 0, BUFFER)) != -1) {
 dest.write(data, 0, count);
 }
 dest.flush();
 dest.close();
 }
 zis.close();
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
} // UnZipStreamCS

Figure 75. File Decompression code snippet.

c. ZIP File Properties
The ZipEntry class describes a compressed file stored in a ZIP file. The

various methods contained in this class can be used to set and get pieces of information

about the entry. These methods include retrieving information such as original size,

compressed size and time of compression. This class is used by the ZipFile and

ZipInputStream to read ZIP files, and the ZipOutputStream to write ZIP files.

2. Gzipping Objects
The ZIP format is record-based, thus suitable for file-based compression, but is

not suited to manipulate objects or data streams. The GZIP is more appropriate as it

operates on a single stream of data making it well suited for transferring large objects

over sockets. The objects are compressed before sending across the network and

decompressed upon arrival at their destination.

S/N Class Type Description

1. GZIPInputStream Class An input stream filter for reading compressed data in the
GZIP file format

2. GZIPOutputStream Class An output stream filter for writing compressed data in the
GZIP file format

Table 22. Classes for Object Compression.

// write to GZipMission object to gzipped file

import java.io.*;
import java.util.zip.*;

public class GZipSaveMission {
 public static void main(String argv[]) throws Exception {

83

 // create some objects
 GZipMission auv_day1 = new GZipMission("23 Mar 2004", 1, 2);
 GZipMission auv_day2 = new GZipMission("24 Mar 2004", 29, 67);

 // serialize the objects auv_day1 and auv_day2
 FileOutputStream fos = new FileOutputStream("gzip_db");
 GZIPOutputStream gz = new GZIPOutputStream(fos);
 ObjectOutputStream oos = new ObjectOutputStream(gz);

 oos.writeObject(auv_day1);
 oos.writeObject(auv_day2);

 oos.flush();
 oos.close();
 fos.close();
 } // main
} // GZipSaveMission

Figure 76. Object Compression code snippet.

// read from gzipped GZipMission object

import java.io.*;
import java.util.zip.*;

public class GZipReadMission {
 public static void main(String argv[]) throws Exception{

 //deserialize objects “auv1” and “auv2”
 FileInputStream fis = new FileInputStream("gzip_db");
 GZIPInputStream gs = new GZIPInputStream(fis);
 ObjectInputStream ois = new ObjectInputStream(gs);

 GZipMission auv1 = (GZipMission) ois.readObject();
 GZipMission auv2 = (GZipMission) ois.readObject();

 //print the records after reconstruction of state
 auv1.print();
 System.out.println("---------------------------------");
 auv2.print();

 ois.close();
 fis.close();
 } // main
} // GzipReadMission

Figure 77. Object Decompression code snippet.

3. Java Archive (JAR) Format
The JAR format is based on the standard ZIP file format but adds an optional

manifest file. The java.util.jar package provides classes for reading and writing JAR

files. Using the classes provided by the java.util.jar package is similar to using the

84

classes provided by the java.util.zip package shown earlier. A sample manifest file is

given in Figure 78.

Manifest-Version: 1.0
Main-Class: AMVW
Class-Path: ../lib/smack.jar ../lib/smackx.jar ../lib/xercesImpl.jar
../lib/xml-apis.jar ../lib/xmlParserAPIs.jar ../lib/xalan.jar
%JAVA_HOME%/jre/lib/ext/vecmath.jar %JAVA_HOME%/jre/lib/ext/j3dcore.jar
%JAVA_HOME%/jre/lib/ext/j3dutils.jar ../lib/dis-java-vrml.jar
../lib/Jama.jar ../lib/j3d-org.jar ../lib/xj3d-all.jar ../lib/uri.jar
../lib/js.jar ../lib/vlc_uri.jar ../lib/httpclient.jar
max-heap-size: 256m

Figure 78. Sample Manifest.mf file for Java Archive.

4. Checksums
Checksums can be used to mask corrupted files or messages. Once a compressed

file has been transferred to the remote machine, the checksum value can be used to detect

whether the file was corrupted during the transmission.

The Adler32 and CRC32 classes in the java.util.zip package, which implement

the java.util.zip.Checksum interface, are used to compute the checksums required for data

compression. The Adler32 algorithm is normally preferred as it faster than the CRC32

and it is as reliable. The getValue() and reset() methods are provided to access the current

checksum value or reset it to the default.

S/N Class Type Description

1. Checksum Interface Represents a data checksum. Implemented by the
classes Adler32 and CRC32

2. Adler32 Class Used to compute the Adler32 checksum of a data
stream

3. CheckedInputStream Class An input stream that maintains the checksum of the
data being read.

4. CheckedOutputStream Class An output stream that maintains the checksum of the
data being written

5. CRC32 Class Used to compute the CRC32 checksum of a data
stream

Table 23. Classes for Checksum.

85

C. BINARY TO TEXT ENCODING AND DECODING
Embedding the byte values from the binary data file into an XML document will

not work due to the XML specification's valid-character restriction and character

encoding and decoding as the document travels from its source to its parsing destination.

According to the XML 1.0 specification, valid character values include the

following ranges of hexadecimal values: 0x9, 0xA, 0xD, 0x20-0xd7ff, 0xe000-0xfffd,

and 0x10000-0x10ffff. The specification also states that all processors are required to

automatically support (and detect) the UTF-8 and UTF-16 encodings. Therefore if one of

these two encodings is used when serializing XML documents, there is no need for an

XML declaration (unless you need to specify version or standalone information):

<?xml version="1.0" encoding="UTF-8"?>
<!-- the text ‘encoding="UTF-8"’ is optional -->

The ISO/IEC 10646 standard published in 1993 by the International Standards

Organization (ISO) specifies the encoding of characters used to convert every written

language into binary form to provide compatibility between multilingual encodings and

most existing software applications that use the ASCII standard. The ISO has defined

many transformations including the UTF-8 and UTF-16 encodings.

1. Brute-Force Approach
The direct approach to solving this encoding problem converts each binary data

byte into its two-character hexadecimal representation. In doing so, the 256 possible byte

values are encoded using two characters from the hexadecimal character set “0-9”, “A-

F”:

byte[] buffer = readFile(filename);
int readBytes = buffer.length;
StringBuffer hexData = new StringBuffer();
for (int i=0; i < readBytes; i++) {
 hexData.append(padHexString (Integer.toHexString(0xff & buffer[i])));
}

A StringBuffer rather than plain String concatenation is used to build the binary

buffer's resulting character representation in order to avoid the unnecessary cost of

repeatedly creating and then releasing String class instances. A possible way to accelerate

the conversion is to use a hexadecimal number lookup table as shown below:

86

public final static String[] _hexLookupTable = { "00", "01", .. ,"fe",
"ff" };

for (int i=0; i < readBytes; i++) {
 hexData.append(_hexLookupTable[0xff & buffer[i]]);
}

With this approach, for each byte in the original binary file, two characters are

generated in the resulting XML document. Algorithmatically, this approach is reasonably

efficient. One of the disadvantages of this approach is that it wastes network bandwidth,

which is an important consideration when transferring large binary data files.

2. Base-64 Encoding Approach
The next approach is the Base-64 encoding conversion. Developers have

historically used this approach to encode binary data within mail messages before

transporting them through mail servers that allow relatively short lines of 7-bit data units.

The Base-64 encoding algorithms is described in Request for Comments (RFC)

2045 - Multipurpose Internet Mail Extensions (MIME). To encode the data, each 3-byte

sequence parcels into four 6-bit numbers. Each 6-bit number is then replaced by the

corresponding US-ASCII character in the Base-64 alphabet to represent binary data and

character ‘=’ for padding (i.e., byte stream's last one or two byte portions). The character

set is “A-Z, a-z, 0-9, +, and /”. Carriage Return Line Feed (CRLF) characters are inserted

into the output stream to keep the line lengths less than 76 characters, this line length

restriction does not apply when transmitting binary data as part of an XML document.

Figure 79. Base-64 encoding illustrated 3-byte stream converted to four 6-bit data units.

87

The advantage of this approach over the brute force method is that it encodes

three data bytes using four characters resulting in an encoded document that is only 33

percent larger than the original binary document rather than 100 percent longer using the

previous method. Compared to the previous approach, 1.33 characters per byte are

generated instead of two characters per byte.

Another advantage of Base-64 is that it has been widely used and many

implementations are available freely. As an example, this thesis uses the already available

class org.apache.soap.encoding.soapenc.Base64 in the Apache SOAP 2.3.1

implementation. In terms of conversion performance, the approach is fast since it consists

of binary shift and table lookup operations. A sample base-64 encoded document is

given below. The base-64 encoded content is stored in the CDATA section of the XML

document.

<?xml version="1.0" encoding="UTF-8"?>
<AgentJabber>
 <AgentPayload>
<![CDATA[H4sIAAAAAAAAAO3QsU0DQRhE4Tsw4FKogBxyenIRboaABmjquDNISKsXTPZWaOb
TybDR0//2/vW53PZyWpbn/fe6f6/rsqzL+fZ+/Vj+tv5++y77tw1/XC4//2zbtnRd9z+3nee
jBwA9AOgBQA8AegDQA4AeAPQAoAcAPQDoAUAPAHoA0AOAHgD0AKAHgPHhcYKNjXbPsd4pW++
UrXfK1jtl652y9U7ZeqdsvVO23ilb75Std8rWO2XrnbL1TtnGO81ADwB6ANADgB4A9ACgBwA
9AOgBQA8AegDQA4AeAPQAoAcAPQDoAUAPAHoA0AOAHgD0AKAHAD0A6AFADwB6ALjb5qMHAD0
A6AFADwB6ANADgB4A9ACgBwA9AOgBQA8AegDQA4AeAPQAoAcAPQDoAUAPAHoA0AOAHgD0AKA
HAD0A6AFADwDjwzrBxka751jvlK13ytY7ZeudsvVO2XqnbL1Ttt4pW++UrXfK1jtl652y9U7
Zeqds451moAcAPQDoAUAPAHoA0AOAHgD0AKAHAD0A6AFADwB6ANADgB4A9ACgBwA9AOgBQA8
AegDQA4AeAPQAoAcAPQCctvnoAUAPAHoA0AOAHgD0AKAHAD0A6AFADwB6ANADgB4A9ACgBwA
9AOgBQA8AegDQA4AeAPQAoAcAPQDoAUAPAHoA0APA+HA/wcZGu+dY75Std8rWO2XrnbL1Ttl
6p2y9U7beKVvvlK13ytY7ZeudsvVO2XqnbOOdZqAHAD0A6AFADwB6ANADgB4A9ACgBwA9AOg
BQA8AegDQA4AeAPQAoAcAPQDoAUAPAHoA0AOAHgD0AKAHAD0APG3z0QOAHgD0AKAHAD0A6AF
ADwB6ANADgB4A9ACgBwA9AOgBQA8AegDQA4AeAPQAoAcAPQDoAUAPAHoA0AOAHgD0AKAHgPH
hYYKNjXbPsd4pW++UrXfK1jtl652y9U7ZeqdsvVO23ilb75Std8rWO2XrnbL1TtnGO81ADwB
6ANADgB4A9ACgBwA9AOgBQA8AegDQA4AeAPQAoAeAb02mddvKvQAA]]>
 </AgentPayload>
</AgentJabber>

Figure 80. Sample XML document with base-64 encoded data in CDATA section.

3. Complex and Proprietary Algorithms
For more efficient binary to text encoding, complex algorithms such as Huffman

can be employed. At the same time, it is possible to treat binary to text encoding as a

form of encryption through the use of a complex and proprietary encoding scheme.

Similarly encryption algorithms can be introduced during the compression process.

Thus, receiving clients will require a proper implementation of the encoding algorithm to

88

decode the binary data from the XML messages necessitating the deployment of

dedicated clients or libraries. This also brings into play the issues of software updates,

correct implementation/program invocation and efficient deployment of new versions.

This is opposed to Base-64 encoding, which is well-known and easily implemented.

In the article “Transfer binary data in an XML document” [Pentakalos 2001], the

author implemented a simple Huffman encoding algorithm that uses the binary data set

statistical properties to compress the encoded character stream. For many data sets, if a

histogram is constructed for each byte value's occurrence frequency within the data set,

an uneven distribution can be observed, where some bytes are used frequently while

others rarely or not at all.

A properly customized Huffman coding can take advantage of this statistical

property to reduce the average code length. Most frequently used bytes are represented in

single characters or short character sequences, and the least frequently used with longer

character sequences. For cases where the distribution is highly skewed towards a byte

value subset, this encoding approach is effective, but it is not as effective for cases where

the distribution is fairly uniform.

D. MESSAGING PROTOCOLS

1. Simple Mail Transfer Protocol (SMTP)
The objective of Simple Mail Transfer Protocol (SMTP) is to transfer mail

reliably and efficiently. SMTP is independent of the particular transmission subsystem

and requires only a reliably ordered data-stream channel. Mail via SMTP is a widely

supported capability that can be used for messaging across firewalls.

An important feature of SMTP is its capability to relay mail across transport

service environments. A transport service provides an inter-process communication

environment (IPCE) that may cover one network, several networks, or a subset of a

network. It is important to realize that IPCEs do not have a one-to-one relationship with

networks. A process can communicate directly with another process through any

mutually known IPCE. Email is one example of an application relying on IPCEs. Mail

can be communicated between processes in different IPCEs by relaying through a process

89

connected to two (or more) IPCEs. More specifically, mail can be relayed between hosts

on different transport systems by a host on both transport systems.

2. File Transfer Protocol (FTP) and Secure FTP (SFTP)
The objectives of FTP are 1) to promote sharing of files, 2) to encourage indirect

or implicit (via programs) use of remote computers, 3) to shield a user from variations in

file storage systems among hosts, and 4) to transfer data reliably and efficiently. FTP,

though usable directly by a user at a terminal, is designed mainly for use by programs.

The FTP specification attempts to satisfy the diverse needs of users of maxi-hosts, mini-

hosts and personal workstations, with a simple and easily implemented protocol design.

Files being transferred by FTP are vulnerable to man-in-the-middle attacks where

data is intercepted and altered before sending it on its way. Various products have been

developed to resolve the security problems with FTP. Some SFTP products use Secure

Socket Layer (SSL) algorithm to perform the encryption, however, worth noting is that

this approach should not be confused with the common use of SSL for browser-based file

transfer encryptions. SSL by itself is limited in its capabilities. FTP and SFTP allow users

to change directories, list directories, and grab entire batches and directories of files in

one fell swoop. SSL is generally used for getting files, and is rather limited when used

for putting batches of raw files in remote locations. While SSL is well-suited for short

online web-based financial transactions, since it requires no special client-side software

except a browser, it is not appropriate for large-scale batch file transfers due to the high

computation costs (and correspondingly long delay times) of encryption/decryption.

3. HyperText Transport Protocol (HTTP) Get/Post and Secure
Hypertext Transfer Protocol (HTTPS)

Currently, HTML forms allow the producer of the form to obtain information

from users. These forms have proven useful in a wide variety of applications in which

user input is necessary, however, this capability is limited because HTML forms do not

provide a way to ask the user to submit files of data. Service providers requiring files

from the user have had to implement custom user applications. Since file upload is a

feature that will benefit many applications, this thesis proposes an extension to HTML to

90

allow information providers to express file upload requests uniformly, and a MIME

compatible representation for file upload responses. Also included is a description of a

backward compatibility strategy that allows new servers to interact with the current

HTML user agents.

HTTPS is a secure message-oriented communications protocol designed for use in

conjunction with HTTP. HTTPS is designed to coexist with HTTP's messaging model

and to be easily integrated with HTTP applications. Syntactically, Secure HTTP

(HTTPS or S-HTTP) messages are the same as HTTP, consisting of a request or status

line followed by a header and body. However, the range of headers is different and the

bodies are typically cryptographically enhanced. HTTPS messages, just as the HTTP

messages, consist of requests from client to server and responses from server to client.

HTTPS does not require client-side public key certificates (or public keys), as it

supports symmetric key-only operation modes. This is significant because it means that

spontaneous private transactions can occur without requiring individual users to have an

established public key. URLs that begin with 'https' are handled using the SSL algorithm

(now commonly termed as Transport Level Security - TLS) that sets up a secure,

encrypted link between a Web browser and a Web server. SSL is the industry standard

protocol for secure, web-based communications and transactions and is implemented as

an optional protocol layer that fits between the TCP and HTTP protocol layers.

4. Messaging Queue System (e.g., Java Messaging Service)
The Java Message Service (JMS) API is an API for accessing enterprise

messaging systems. It is part of the Java 2 Platform, Enterprise Edition (J2EE).

JMS is designed to make it easy to write business applications that

asynchronously send and receive critical business data and events. It defines a common

enterprise messaging API that can be easily and efficiently supported by a wide range of

enterprise messaging products. JMS supports both message-queuing and publish-

subscribe styles of messaging.

JMS messages are asynchronous requests, reports, or events that are consumed by

enterprise applications, not humans. They contain vital information needed to coordinate

91

these systems and contain precisely formatted data describing specific business actions.

Through the exchange of these messages, each application tracks the progress of the

enterprise.

5. Jabber/Chat Using Extensible Messaging and Presence Protocol

(XMPP)
Jabber is a set of streaming XML protocols and technologies that enable any two

entities on the Internet to exchange messages, presence, and other structured information

in near-real time. Jabber is an open, platform independent messaging framework based on

XML for real-time extensible messaging and user presence. The basic Jabber application

is an instant messaging (IM) network that offers functionality similar to legacy IM

services such as AIM, ICQ, MSN, and Yahoo. However, Jabber is more than just IM, and

Jabber technologies offer several key advantages. The Internet Engineering Task Force

(IETF) is currently formalizing the core XML streaming protocols as an approved instant

messaging and presence technology under the name of XMPP. The following sections

explore the use of Jabber protocol for both human and machine message passing such as

agent-to-agent communications.

S/N Protocol Pros Cons

1. Email (SMTP, Microsoft
mail or similar)

Open or proprietary
standards.

Queuing is built-in.

Good for human-to-human
communications.

Does not guarantee timely
delivery

Bad for machine-to-machine, or
machine-to-human
communications.

Data is either stored in the
message body or as an
attachment. Additional
processing required to extract
the data from attachments.

Text-only data types. Depending
on applications, rich-text and
HTML formats may be
supported.

By default, message expiry
feature is not available.

2. File Transfer Protocol
(FTP) and Secure FTP

Open standards. RFC 959.

Queuing is not available; i.e.,
no built-in resend mechanism

To prevent hackers from
exploiting anonymous/guest
users, anonymous/guest user
IDs are turned off. User

92

S/N Protocol Pros Cons

to handle cases when the
receiving party is not
available.

Near-real time performance
using TCP protocol.

ID/password is either hard-
coded or via operating systems’
specific means of
authentication. The latter is
good provided the user
environment is homogeneous.

Message expiry not available.

3. HyperText Transport
Protocol (HTTP)
Get/Post and Secure
HTTP (HTTPS)

Open standards. RFC 1867.

Built-in queuing mechanism.

Near-real time performance
using TCP protocol.

Session-less.

Message expiry not available.

4. Messaging Queue
System (e.g., Java
Messaging Service)

Sun provides a reference
implementation for its Java
Messaging Service (JMS)
specifications.

Built-in queuing mechanism.

Support interchange of Java
objects (JMS only).

“Publish-subscribe”
mechanism.

Message expiry built-in.

Supports data types.

Provides methods and
expectations for Quality of
Service (QoS).

Vendor-specific (IBM Message
Queue or Microsoft Message
Queuing, MSMQ),

Proprietary implementations;
e.g., SonicMQ.

Requires in-depth knowledge.

Open-source implementation
available (JBoss), but pay for
support.

5. Jabber/Chat using
Extensible Messaging
and Presence Protocol
(XMPP)

Open standards. RFC 2779.

Built-in queuing mechanism.

Near-real time performance
using TCP protocol.

Simple “publish-subscribe”
mechanism can be achieved
through chat-rooms.

Ease of implementation.

Messages are XML-based.

Presence needs to be
established at start time.
Text-only data types.
Workaround by embedding the
data type information within the
XHTML stanza.

Message expiry not available.

Table 24. Comparison of messaging systems and their protocols.

93

E. MESSAGE REPRESENTATION
Traditional messaging systems (e.g., email) store binary data as an attachment to

the message subject/body. With XMPP, all messages are XML-based making it

necessary to find ways to send binary data via this protocol. The XMPP protocol

includes a base protocol and many optional extensions typically documented as Jabber

Enhancement Proposals (JEPs).

1. Jabber Enhancement Proposals

a. Private Data (JEP-49)
JEP-49 is a mechanism to allow users to store arbitrary XML data on an

XMPP server. Each private data chunk is defined by an element name and XML

namespace. Example private data:

<color xmlns="http://example.com/xmpp/color">
 <favorite>blue</blue>
 <leastFavorite>puce</leastFavorite>
</color>

A Jabber client can store any arbitrary XML on the server side by sending

an iq chunk of type "set" to the server with a query child scoped by the jabber:iq:private

namespace. The query element may contain any arbitrary XML fragment as long as the

root element of that fragment is scoped by its own namespace. The data can then be

retrieved by sending an iq of type "get" with a query child scoped by the

jabber:iq:private namespace, which in turn contains a child element scoped by the

namespace used for storage of that fragment. Using this method, Jabber entities can store

private data on the server and retrieve it whenever necessary. The data stored might be

anything, as long as it is valid XML. One typical usage for this namespace is the server-

side storage of client preferences.

b. Extensible HyperText Markup Language (XHTML) (JEP-71)
The JEP-71 proposal defines an adaptation of XHTML 1.0 to provide

alternative formatting for a text message. It provides the ability to send and receive

formatted messages using XHTML. This pattern is familiar from email, wherein the

HTML-formatted version of the message supplements, but does not supersede the text-

only version of the message. In Jabber communications, the meaning (as opposed to

formatting) of the message must always be represented as best as possible in the normal

94

body child of the message element. Formatting is then provided by the XHTML

representation of the message content within a html wrapper element.

<message>
 <body>hi</body>
 <html xmlns='http://jabber.org/protocol/xhtml-im'>
 <body xmlns='http://www.w3.org/1999/xhtml'>
 <h1>hello</h1>
 </body>
 </html>
</message>

These two JEPs provide two possible ways to package binary data:

• Embed a hyperlink to binary data via out-of-band (oob) messages.

• Embed the binary data in a CDATA section.

Even though these two methods could be used to represent binary data, one is not

necessarily a good substitute for another. Alternatively, these methods can be applied to

complement each other.

Figure 81. Packaging binary data in a Jabber message.

2. Embed Hyperlink to Binary Data via Out-of-band (oob) Messages
An out-of-band message is a message x extension that is embedded in a standard

Jabber message packet (usually a message of type normal). An oob message contains

information, typically a url link that clients can use to conduct direct application-to-

application data transfer that bypasses the normal Jabber message routing via the Jabber

server. The link typically points to a web or FTP server.

95

Figure 82. Overview on file transfer using out-of-band (oob) message.

Out-of-band messages are typically used to arrange transfer of large files that are

impractical to route via the server. A sample oob message is given below:

<iq type='set' id='file_1' to='recipient@surfaris.cs.nps.mil/home'>
 <query xmlns='jabber:iq:oob'>
 <desc>Here is the image file u requested.</desc>
 <url>http://files.nps.mil/sample.bmp</url>
 </query>
</iq>

Although this method reduces network traffic on the Jabber server (note: actual

traffic required to transport the binary data from one location to another is still the same),

it introduces a point of failure to the transport mechanism; if the storage server is offline,

there is no way to retrieve the data. This problem can be circumvented through the

introduction of multiple hyperlinks to the same binary data; i.e., each hyperlink pointing

to different storage locations of the same file.

<iq type='set' id='file_1' to='recipient@surfaris.cs.nps.mil/home'>
 <query xmlns='jabber:iq:oob'>
 <desc>Here is the image file u requested.</desc>
 <url>http://fileserver1.nps.mil/sample.bmp</url>
 <url>http://fileserver2.nps.mil/sample.bmp</url>
 <url>http://fileserver3.nps.mil/sample.bmp</url>
 </query>
</iq>

96

3. Embed Binary Data in CDATA Section
In order to reduce the time required to retrieve data from another location, binary

data can be embedded within the XML document. This allows the recipient to process

the data immediately upon receipt. By making use of compression and base-64 encoding

techniques discussed earlier, it is possible to reduce the size and at the same time embed

binary data in an XML message. To add another layer of reliability to this method,

multiple hyperlinks to storage locations are added. This is similar to the technique

discussed above. If the encoded/compressed data was corrupted during its delivery, the

recipient will still be able to retrieve it from a storage server via FTP or HTTP. (Note:

Since some firewalls block out FTP traffic, therefore it is better to include links to both

FTP and HTTP servers.) At the same time, a maximum file size limit can be introduced

to prevent overloading the Jabber server. Thus for a large file (e.g., larger than 1MB), the

CDATA section will not be populated with the encoded binary data, and hyperlinks will

be used to retrieve the file. Upon receipt, the client spawns an HTTP or FTP process to

retrieve the file from the storage location. A sample XML message (without the Jabber

message wrapper) and the function to perform base-64 encoding and compression are

given Appendix E.

<AgentJabber>
 <!--Payload 1-->
 <AgentPayload checksum="1234567"
 content-transfer-encoding="base-64"
 content-type="application/x-zip-compressed"
 desc="The filename is [GAMMA.bmp]"
 filename="GAMMA_apple.bmp"
 filesize="48586"
 timestamp="20040026114827">
<![CDATA[H4sIAAAAAAAAAO3QsU0DQRhE4Tsw4FKogBxyenIRboaABmjquDNISKsXTPZWaOb
TybDR0//2/vW53PZyWpbn/fe6f6/rsqzL+fZ+/Vj+tv5++y77tw1/XC4//2zbtnRd9z+3nee
jBwA9AOgBQA8AegDQA4AeAPQAoAcAPQDoAUAPAHoA0AOAHgD0AKAHgPHhcYKNjXbPsd4pW++
UrXfK1jtl652y9U7ZeqdsvVO23ilb75Std8rWO2XrnbL1TtnGO81ADwB6ANADgB4A9ACgBwA
oA0APA+HA/wcZGu+dY75Std8rWO2XrnbL1Ttl6p2y9U7beKVvvlK13ytY7ZeudsvVO2XqnbO
OdZqAHAD0A6AFADwB6ANADgB4A9ACgBwA9AOgBQA8AegDQA4AeAPQAoAcAPQDoAUAPAHoA0A
OAHgD0AKAHAD0APG3z0QOAHgD0AKAHAD0A6AFADwB6ANADgB4A9ACgBwA9AOgBQA8AegDQA4
AeAPQAoAcAPQDoAUAPAHoA0AOAHgD0AKAHgPHhYYKNjXbPsd4pW++UrXfK1jtl652y9U7Zeq
dsvVO23ilb75Std8rWO2XrnbL1TtnGO81ADwB6ANADgB4A9ACgBwA9AOgBQA8AegDQA4AeAP
QAoAeAb02mddvKvQAA]]>
 <url>http://www.google.com/images/logo.gif</url>
 </AgentPayload>
</AgentJabber>

Figure 83. Sample XML message with encoded binary data.

97

S/N Name Type Description

1. AgentJabber Element Root.

2. AgentPayload Element One or many <AgentPayload> elements under <AgentJabber>

3. checksum Attribute Numeric checksum value for the byte data stored within CDATA
section.

4. content-transfer-
encoding

Attribute Technique used to encode binary data in CDATA section. Valid
values are “base64” and “Huffman”.

5. content-type Attribute Details of binary data that allows the correct application to
process it.

6. desc Attribute File description.

7. filename Attribute Original file name.

8. filesize Attribute Original file size in bytes.

9. timestamp Attribute Date/time value of file creation in “yyyymmddhhmmss” format;
e.g., 20040115235959 is 15 Jan 2004 at time 23:59:59.

10. CDATA Element Base64 encoded binary data.

11. url Element Defines the location where the binary file/data can be found

Table 25. XML tagset to define the XHTML payload in the Jabber message.

F. DESIGN AND IMPLEMENTATION

1. Overview
This section explores possible ways to implement chat clients that enable the data

exchange of both messages and binary files using Jabber protocol. The three approaches

covered in this section are: web-based, standard client and customized Jabber client. This

section discusses how an application that makes use of Jabber protocol for

communications can be implemented. Technical details on the use of compression and

base-64 encoding to facilitate message exchange of both textual (e.g., mission scripts)

and non-textual (e.g., images) data are also covered.

98

Figure 84. Overview of the three approaches to Jabber instant messaging.

2. Introduction to Jabber Protocol
A full Jabber ID takes the form [user name]@[Jabber server]/[resource], similar

to an email address. A groupchat/chat room takes the form: [chatroom/group

name]@[Jabber groupchat server]/[nickname]. There are three core Jabber protocols,

namely:

• Message. This is responsible for the delivering of data. Most of the time,

it accounts for the bulk of the packet traffic on the Jabber network. These

messages can resemble full-scale email messages or form line-by-line

messages in chat sessions. This protocol uses the message packet. A

sample message packet is given below:

<message xml:lang=“en-us”
 to=“savage@conference.xchat.movesinstitute.org”
 type=“groupchat”>
<body>This is a test message</body>
</message>

Figure 85. A sample “groupchat” message to “savage” chatroom.

99

<message xml:lang=“en-us”
 to=“auvrobot@surfaris.cs.nps.navy.mil”
 type=“chat”>
 <subject>This is the subject</subject>
 <body>This is a test message</body>
</message>

Figure 86. A sample chat message to “auvrobot” Jabber user.

S/N Name Type Description

1. message Element Application to be invoked from toolbar.

2. xml:lang Attribute Language used.

3.
to Attribute Receiver of message packet, i.e., another Jabber user

or Jabber server.

4.
type Attribute An enumeration to indicate message type. Possible

values are groupchat and chat.

5.
subject Element Message subject. This is available for chat messages

only.

6. body Element Message body.
Table 26. Message packet types and protocol.

• Presence. The basic presence protocol is used in presence update and

presence subscription management. Presence update is to inform people

of the user’s current presence state. Presences subscription management

allows people to subscribe to another user’s presence update packet and

control who has access to their own presence. This protocol uses the

presence packet. A sample presence packet is given below:

<presence from=“auvrobot@surfaris.cs.nps.navy.mil”
 to=“savage@conference.xchat.movesinstitute.org”
 type= “available”>
 <status>I am now logged on to chatroom.</status>
 <priority>10</priority>
 <show>chat<show>
</presence>

Figure 87. A sample “presence” packet from “auvrobot” to “savage groupchat” server.

100

S/N Name Type Description

1. Presence Element Application to be invoked from toolbar.

2. from Attribute Sender of presence packet.

3. to Attribute Receiver of presence packet, normally a Jabber server.

4. type Attribute An enumeration to indicate presence status. Possible
values are “available”, “unavailable”, “subscribe”, “un
subscribe”, “subscribed”, “un subscribed” and “error”.

5. status Element User-definable free-form text description to be
displayed.

6. priority Element Non-negative integer value to delivery priority for this
current resource. Higher numbers have higher priority.

7. show Element Jabber clients typically use this to display presence
icons, sound or alerts. If no show state is indicated,
the user is in normal or online state. The other
possible states are chat, away, xa (extended away)
and dnd (do not disturb).

Table 27. “Presence” packet types and protocol.

• Info/Query (IQ). This handles everything else that does not fall under a

Message or Presence packet. It serves as a catch-all protocol. If a

protocol is not sending a message, or managing presence, it is an IQ

protocol. IQ is a generic request-response protocol and it is designed to be

easily extensible with IQ extension protocols. An IQ packet may look like

the following:

<iq type=’get’ to=’handlerJID’>
 <query xmlns=’jabber:iq-auth’>
 <username>auvcontrol</username>
 </query>
</iq>

A typical Jabber session:

• Connect with a Jabber server (e.g., xchat.moveinstitute.org).

• Open a Jabber stream by logging in using user account “auvcontrol”,

password “auvpwd” on domain “xchat.moveinstitute.org”.

• Update presence status to “available”.

101

3. Web-based Jabber Client
The components required for this approach are a HTML form running on the

client’s Internet browser and a Java servlet on the web server to process, package and

send out the Jabber messages. An HTML form can be easily implemented using standard

HTML objects. Below are some examples of HTML objects used to generate the HTML

form:

<!-- Creates a single-line text entry control -->
<input type="text" name="edtSubject" value="Message Subject" size="30">

<-- Creates a file upload object with a text box and Browse button. -->
<input type="file" name="edtFile">

For a file upload to take place:

• The INPUT type=file element must be enclosed within a FORM element.

• A value must be specified for the NAME attribute of the INPUT type=file

element.

• The METHOD attribute of the FORM element must be set to post.

• The ENCTYPE attribute of the FORM element must be set to

multipart/form-data.

To handle a file upload, a server-side process must be running that can handle

multipart/form-data submissions. For this thesis, a Java servlet was implemented to parse

and package the uploaded HTML data to be sent out as an XHTML Jabber message. The

servlet uses the O’Reilly multipart file upload library (com.oreilly.servlet) to extract the

uploaded file data.

With a HTML form, user input can be validated before it is sent to the server. If

validation is performed on the client web browser, it is likely to be implemented using

Netscape’s JavaScript or Microsoft’s VBScript. JavaScript syntax is different from

VBScript. Since JavaScript and VBScript are specifically designed to work in browsers,

they do not include features that are normally outside the scope of scripting, such as file

access and printing. JavaScript is preferred for validation code due to compatibility and

102

consistency issues, especially VBScript on different browsers. Specifically, while

VBScript is fully supported by Microsoft Internet Explorer, the same cannot be said for

other browsers.

At the time of this thesis, a “send-only” HTML form has been developed.

Therefore the user will still require a Jabber client to view incoming Jabber messages. A

possible way to implement a message receive module in the Internet browser is as

follows.

• Modify the servlet to listen for incoming messages from one or more chat-

rooms or JIDs.

• Upon receipt of Jabber messages, convert them to HTML format (include

date/time for easy reference). This is to be displayed within a HTML

frame on the client Internet browser.

• HTML is for display purposes, it does not have the means to actively

listen for updated web pages. Thus a simple polling mechanism is

required. This example causes the browser to reload the document every

five seconds, but it causes unnecessary refresh on the web page.

<meta http-equiv="refresh" content="5; ">

Steps involved in sending a message via the web-based Jabber approach:

Client:
• Access to Jabber-enabled website using standard Internet browser.
• Key-in required data in the HTML Form.

Server:

• Servlet receives posted HTML data and files, if any.
• Re-package HTML data to XHTML Jabber format.
• Get list of recipients from configuration file.
• Log into Jabber server.

• Send packaged data as Jabber message to recipients.

103

Figure 88. Data and file transfer via HTTP-Jabber protocol.

Figure 89. Sample HTML form for posting of data.

104

Figure 90. Sample HTML form for posting of data and files.

Figure 91. Sample HTML form for Target Events.

4. Standard Jabber Client
Standard Jabber clients are only able to send and receive standard Jabber

messages (subject and message body). Certain clients (e.g., Rhymbox) have a “Console”

interface that allows the user to key-in and send customized Jabber messages, however

the files still need to be compressed, binary-to-text encoded and packaged as XHTML

format before they can be sent out. The user needs to manually invoke the modules (if

105

any) that will perform the conversion, copy-and-paste the textual results into the

“Console” interface and then send it out. This process is tedious and diminishes the

usability of this technique of message exchange, especially when the load increases.

Steps involved in sending a message via the standard Jabber client approach:

Client:
• Log into Jabber server.
• Key-in message subject and body.

• Send to specific user IDs or chat-rooms.

Figure 92. Rhymbox Jabber client.

106

Figure 93. Data exchange using standard Jabber client.

5. Customized Jabber Client
A customized Jabber client can send and receive standard Jabber messages as well

as messages with embedded binary data. The customized client automatically packages

and sends out XHTML messages. It is also able to mimic an Internet browser and

perform a HTTP POST of data and files to a Jabber-enabled web site (i.e., deployed with

the servlet to receive posted data and files). This ability has been incorporated in the

customized Jabber client for this thesis.

Of the three proposed solutions, only the customized client is able to re-generate

the binary data either by decompressing and decoding the embedded data, or by

retrieving the file from a hyperlink (specified within url tags). Once the data has been re-

generated, it invokes the module or application to display the data.

The third approach functions both as a backup for Jabber communications and as

a storage location for binary data that is referenced (in url tags) in the Jabber XHTML

messages. Although the customized Jabber client is the most complex and takes the

longest to develop, it is the most flexible solution. To enable reuse, the customized client

that has been developed for this thesis is generic. Therefore it can be plugged into any

application for that requires text and binary data message passing.

107

Figure 94. Customized Jabber client user interface to send data and files as Jabber message.

Figure 95. Customized Jabber client user interface to display list of incoming Jabber

messages.

108

Figure 96. Customized Jabber client user interface – Event Monitoring Criteria.

Figure 97. Data and file transfer via HTTP-Jabber and Jabber protocol.

The following table provides an overview of the three techniques discussed. For

this thesis, emphasis was placed on the customized client due to the need to integrate into

the AUV Workbench. The web-based solution using HTML form is also a viable

solution provided there is a way to perform “smart” refresh of posted messages.

109

S/N Description Web-based Standard Client Customized Client

1. Components. HTML Form on client
Internet browser for
posting of HTML data.
Java servlet on a web
server to process
uploaded data and
communications with
Jabber server.

Standard client.
Jabber server
communications.

Customized client.
Message processing
and Jabber
communications.

2. Message type. Standard subject-body
message and complex
messages with
embedded binary data
(able to encode only).

Standard subject-body
message.

Standard subject-body
message and complex
messages with
embedded binary data.

3. Message validation. Client-side using
JavaScript or at server-
end.

None. Customized user
interface allows for
complex data
validation.

4. Protocol. HTTP-to-Jabber. Jabber only. Jabber and HTTP-to-
Jabber. The web-
based solution can
serve as a backup.

5. Direction of
communications.

One-way – Able to send
message only.

Send and receive
messages.

Send and receive
messages.

6. Recipients per
message

Able to specify multiple
recipients.

One recipient at a
time.

Able to specify multiple
recipients.

7. Performance. Compared to the other
two, this is slower since it
is going through a web
server.

Near-real time. Near-real time.

8. Deployment. Minimal or none. As
long as the client has
access to the web site.

Required. Periodic
software update.

Required. Periodic
software update.

9. Uses. Report submission.
Posting of
happening/events.

Human-human
interactions.

Human-human
Machine-machine and
human-machine
interactions.

Table 28. Comparison of the three approaches.

6. Interior of a Jabber-enabled Agent
This section provides an overview of how the different pieces of technologies are

put together, using agents as an exemplar. Each agent makes use of its own unique Jabber

ID to identify itself within the Jabber network. There are two ways whereby the agents

can communicate. Peer-to-peer “chat” messages are used for dedicated agent-to-agent

110

communication; whereas “groupchat” messages are used to allow multiple agents to

listen to and react to messages posted on the chatroom. The “groupchat” feature is

similar to a “publish-subscribe” mechanism.

Once the binary data has been extracted, it can be worked on by other processes

or saved in a database for archival purposes. Components of the agent interior are shown

in Figure 98 and described below.

Figure 98. Interior of a Jabber-enabled agent.

a. Jabber Communications
This handles network communications for the Jabber protocol such as

login, joining chatrooms, initiating chat sessions and listening for messages.

b. Message Formatting
Packaging of the message header and its payload is done in this module.

The message payload includes message subject, body and binary data, if any. This

module is responsible for packaging one or multiple files within the same Jabber

message. An example with two files is show in Figure 99.

111

<?xml version="1.0" encoding="UTF-8"?>
<agent-jabber>
 <!--Payload 1-->
 <agent-payload checksum="1234567"
 content-transfer-encoding="base-64"
 content-type="application/x-zip-compressed"
 desc="Description here" filename="Tropical Card.svg"
 filesize="573677"
 timestamp="20040017184631">
 <![CDATA[]]>
 <url>http://server1/Tropical Card.svg</url>
 <url>http://server2/Tropical Card.svg</url>
 <url>http://server3/Tropical Card.svg</url>
 </agent-payload>
 <!--Payload 2-->
 <agent-payload checksum="1111111"
 content-transfer-encoding="base-64"
 content-type="application/x-zip-compressed"
 desc="Description here" filename="Cheshire Cat.svg"
 filesize="102457"
 timestamp="20040017184631">
 <![CDATA[]]>
 <url>http://server1/Cheshire Cat.svg </url>
 <url>http://server2/Cheshire Cat.svg</url>
 <url>http://server3/Cheshire Cat.svg</url>
 </agent-payload>
</agent-jabber>

Figure 99. Two files are packaged within the Jabber message.

c. Message Processing
The message generation process is done prior to sending. Upon receipt,

processes such as archival into database or flat file can be triggered, in addition to

invocation of programs to display the binary data; e.g., JPEG and GIF images. This

module determines whether the binary data will be embedded in the message. This is

based on a predetermined file size (e.g., 1MB). This prevents overloading the Jabber

servers and in addition, certain administrators limit the message size. Therefore it is

advisable to send small-sized files via the Jabber protocol. The file data is only stored

within the CDATA section provided its size is less than the preset limit. Otherwise the

CDATA is left empty (See Figure 100), but the header information pertaining to the file,

such as file name and size, are kept in the message payload.

112

<?xml version="1.0" encoding="UTF-8"?>
<agent-jabber>
 <agent-payload checksum="1234567"
 content-transfer-encoding="base-64"
 content-type="application/x-zip-compressed"
 desc="Description here" filename="Tropical Card.svg"
 filesize="573677"
 timestamp="20040017184631">
 <![CDATA[]]>
 <url>http://server1/Tropical Card.svg</url>
 <url>C:\temp2\Tropical Card.svg</url>
 <url>ftp://ftpserver3/Tropical Card.svg</url>
 </agent-payload>
</agent-jabber>

Figure 100. Binary data, if present, is embedded within the highlighted CDATA section.

Upon receipt of a message, this module determines whether it needs to

retrieve from binary data from a hyperlink (i.e., if CDATA section is empty). Storage

locations of the binary data file may reside on a web server (e.g., Apache Tomcat), FTP

server or a dedicated agent with web server functionalities built into it. With an Apache

web-server, it needs to be administered. On the other hand, having web server

functionalities reside in a Jabber-enabled agent reduces the need for additional

administration. It may not be advisable, however to burden the agent with additional

processes.

Pre-processing activities that are platform or system specific; e.g., image

segmentation on UAV imagery, are not included as part of the message processing

module. This keeps this module generic and thus extensible to other AUV or non-AUV

platforms, as well as improving the performance of the module. Pre-processing modules

are responsible for computation of data, representation (e.g., how to capture continuous

changing information such as change in water pressure due to an explosion), and

generation of results in file or text format.

d. Compression and Decompression
Compression of the message packet to reduce its size is done here.

Similarly, decompression is performed at the receiving end. Some file formats are

already in compressed form; e.g., GIF, JPEG and PNG do not require further

compression. Compress-able file formats include Windows bitmaps and ASCII text. If

113

the zipped form of the file is bigger than the original file size, the original data file is used

instead. For this thesis, standard compression and decompression from Java are used.

For added security, this module can be easily replaced with a cryptographic module here

and on the receiving end.

e. Base-64 Encode and Decode
Binary to text encoding is performed in this module to handle non-textual

data; e.g., images, audio, video and compressed data from the compression module.

f. XML Parsing
Since Jabber messages are XML-based, XML parsing and transformation

are required. Open-source libraries (Apache Xerces for parsing, Apache Xalan for

transformation) are used.

7. Message Generation
The steps to process an outgoing message are given below.

1. Loop through list of files to be sent.
2. For each file, do the following:

a. Create a <agent-payload> element.
b. Add file information such as name, size and content-type into the <agent-

payload> attributes.
c. Determine file types based on file extension (e.g., .BMP is 24-bit

Windows bitmap and .GIF is Compuserve GIF).
d. If the files types are GIF, JPEG, EXE, do not compress. Otherwise,

perform compression. If compressed data size is greater than original,
encode the original data instead.

e. Check whether the file size exceeds a predefined limit. If no, proceed to
compress and encode into CDATA section of message.

f. If available, always add a list of hyperlinks associated to the file under the
<url> tags.

3. Generate XHTML message.
4. Append to the XHTML portion of Jabber message and send it out to designated

parties.

114

The steps to process an incoming message are given below.

1. Loop through list of <agent-payload> elements.
2. For each <agent-payload> element, do the following:

a. Get file information such as name, size, content-type and content-transfer-
encoding.

b. Check whether there is data in the CDATA section of message.
i. If yes, check type
ii. Otherwise, loop through the list of <url> tags and try to retrieve the

file from one of the storage locations specified within the <url>
tag. At the moment, the customize client is able to fetch the file
from a web/HTTP server and local/networked file system.

c. Upon successful retrieval of the file contents, an “AgentPayload” object
shall be created.

<agent-payload ...
 <url>http://server2/Cheshire Cat.svg</url>
 <url>http://server3/Cheshire Cat.svg</url>
 <url>ftp://www.server3.com/Cheshire Cat.svg</url>
 <url>file://c://server3/Cheshire Cat.svg</url>
 <url>c://server3/Cheshire Cat.svg</url>
</agent-payload>

Figure 101. Links to multiple storage locations.

Figure 102. Processing of outgoing binary file data before it is sent out via Jabber protocol.

115

Figure 103. Processing of incoming encoded binary data via Jabber protocol.

8. Smack Library
Smack is a library for communicating with XMPP servers to perform instant

messaging and chat. The library provides easy machine-to-machine communication and

it allows the setting of any number of properties on each message, including properties

that are Java objects. The library was developed and maintained by Jive Software, at

www.jivesoftware.com (accessed February 2004) and is open-source under the Apache

Software License, which allows its incorporation into both commercial and non-

commercial applications.

The library is extremely simple to use, yet it has a powerful set of Application

Programming Interfaces (APIs). Sending a text message to a user can be accomplished in

three lines of code:

XMPPConnection connection = new XMPPConnection("surfaris.cs.nps.navy.mil");
connection.login("userA", "passwordA");
connection.createChat("userB@xchat.movesinstitute.org").sendMessage("Hello");

116

Smack provides the org.jivesoftware.smack package for the core XMPP protocol,

and the org.jivesoftware.smackx package for many of the protocol extensions.

G. BENCHMARKS
In the benchmark tests, only the timings for packaging (i.e., compression and

base-64 encoding) are captured. Network timings (i.e., Jabber instant messaging) are

excluded since the results will be subjected to the network traffic and the available

bandwidth. The ASCII plain-text data are from GEOnet Names Server (GNS) at

http://earth-info.nima.mil/gns/html (accessed on 15 February 2004). The XML plain-

text data were converted from the ASCII data using the GNS class (see Appendix F). A

sample procedure to convert GNS plain-text data to XML format is given below.

S/N Original file
size (in bytes)

Encoded file
size (in
bytes)

Percentage
of reduction
(in %)

Total time to
compress (in
msecs)

Total time to
base-64
encode (in
msecs)

Total time
taken (in
msecs)

1. 7326956 2380837 67.51 1219 203 1797

2. 5754326 1845969 67.92 1094 250 1657

3. 4378072 395021 90.98 862 440 1642

4. 2106320 652205 69.04 344 141 563

5. 683375 179392 73.75 78 0 156

6. 489429 153828 68.57 63 0 78

7. 402650 98732 75.48 47 0 125

8. 402295 105304 73.82 47 0 63

9. 333117 86264 74.10 110 16 141

10. 243188 78892 67.56 31 94 172

11. 243188 78892 67.56 31 0 63

12. 93972 26147 72.18 16 0 16

13. 63147 19727 68.76 0 0 0

Figure 104. ASCII Plain-text Files achieved on average 72.09% reduction in size.

117

S/N Original file
size (in bytes)

Encoded file
size (in
bytes)

Percentage
of reduction
(in %)

Total time to
compress (in
msecs)

Total time to
base-64
encode (in
msecs)

Total time
taken (in
msecs)

1. 2534082 77473 96.94 240 41 701

2. 737564 31412 95.74 80 40 330

3. 900805 226032 74.91 300 30 591

4. 328028 74560 77.27 90 0 100

5. 46480 5295 88.61 0 0 10

Figure 105. HTML Plain-text Files achieved on average 86.69% reduction in size.

S/N Original file
size (in bytes)

Encoded file
size (in
bytes)

Percentage
of reduction
(in %)

Total time to
compress (in
msecs)

Total time to
base-64
encode (in
msecs)

Total time
taken (in
msecs)

1 5941238 867565 85.40 516 172 797

2 1889736 244145 87.08 125 0 203

3 1378706 205665 85.08 78 0 156

4 1120696 147261 86.86 63 0 141

5 1116375 134441 87.96 62 16 156

6 896070 118276 86.80 47 15 156

7 649901 103836 84.02 47 0 63

8 262508 36940 85.93 15 0 31

9 173119 26904 84.46 15 0 15

Figure 106. XML Plain-text Files achieved on average 85.95% reduction in size.

S/N Original file
size (in bytes)

Encoded file
size (in
bytes)

Percentage
of reduction
(in %)

Total time to
compress (in
msecs)

Total time to
base-64
encode (in
msecs)

Total time
taken (in
msecs)

1. 3003707 87177 97.10 270 30 590

2. 870106 33792 96.12 80 0 330

3. 891287 224024 74.87 310 20 541

4. 197414 65208 66.97 50 20 80

5. 13134 3039 76.86 0 0 20

Figure 107. X3D Plain-text Files achieved on average 82.38% reduction in size.

118

S/N Original file
size (in bytes)

Encoded file
size (in
bytes)

Percentage
of reduction
(in %)

Total time to
compress (in
msecs)

Total time to
base-64
encode (in
msecs)

Total time
taken (in
msecs)

1. 3003196 86825 97.11 261 30 591

2. 869593 33528 96.14 80 0 330

3. 890645 223820 74.87 300 0 550

4. 174369 64412 63.06 60 20 80

5. 11991 2999 74.99 0 0 20

Figure 108. VRML Plain-text Files achieved on average 81.23% reduction in size.

S/N Original file
size (in bytes)

Encoded file
size (in
bytes)

Percentage
of reduction
(in %)

Total time to
compress (in
msecs)

Total time to
base-64
encode (in
msecs)

Total time
taken (in
msecs)

1. 4760390 1687945 64.54 2443 501 3335

2. 3830190 1084981 71.67 1452 410 2163

3. 1300052 417709 67.87 311 40 571

4. 854570 171312 79.95 141 30 211

5. 361041 149080 58.70 170 10 200

6. 220866 92392 58.17 70 10 100

Figure 109. SVG Plain-text Files achieved on average 66.82% reduction in size.

H. SUMMARY
This chapter has proposed a solution to package text and binary data to be sent via

Jabber instant messaging protocol. Compression of data was done using standard Java

classes. The Java classes compressed both text-based (including XML-based file) and

binary files such as images. In general the percentage of compression achieved is 75% of

the original file, higher for text-based files. As for Windows bitmap images, the

compression ratio depends on the type of image that has been stored. Therefore a better

way to ensure optimal compression is to convert the Windows bitmap images to PNG or

JPEG format on the fly. Of note, JPEG is lossy and may cause degradation in image

quality. Therefore PNG format is favored for its lossless’ nature. To achieve better

compression ratio for XML data, XML Schema-based Binary Compression (XSBC)

(Serin2003) can be used to complement the Java classes. XML files are handled by

XSBC, whereas non-XML files such as plain-text or images are handled by the proposed

119

mechanism. Forward Error Correction can be introduced to ensure reliability of data

transmission and receipt over noisy communication channels.

On average, the base-64 encoding of the binary data to text data, for storage in the

CDATA section of the Jabber XML-based message, increased the file size by 33%. A

better binary to text encoding scheme (e.g., using Huffman algorithm), can be pursued in

future work.

It is important to note that besides size, the time taken to run the compression

process also plays an important part. An algorithm may be good at generating a smaller

sized file, but the time taken may be so long that it is unacceptable to the user.

There is a physical message size limit set on the Jabber server. This is to prevent

overloading the Jabber server. Although the proposed mechanism introduces the use of

hyperlinks to circumvent the potential issues, a more robust solution should be pursued;

e.g., if the size is too big, the file is automatically posted on a web server using standard

HTTP POST mechanism.

120

THIS PAGE INTENTIONALLY LEFT BLANK

121

V. TASK COLLABORATION USING AGENTS

A. INTRODUCTION

Multiple vehicles operating in a coordinated manner can be more effective than a

single one. For instance, a cluster of coordinated Autonomous Underwater Vehicles

(AUVs) can search a coastal area for mines more effectively than a single vehicle,

however handling unanticipated events (novel or completely unexpected) is difficult,

since they are sometimes hard to detect, much less diagnose and respond to, even for a

single vehicle. If the AUV is part of a cooperative or collaborative distributed multi-

agent system, the problem is compounded. The AUV controller must now be concerned

about what the event means for the others, the group as a whole, and their shared

mission/goal. Multi-agent event handling is complicated by uncertainty and lack of

knowledge about other agents’ intentions/goals; it is exacerbated by the low bandwidth of

communication channels available for use in the ocean.

An agent also needs to be able to communicate with other agents to fill in the gaps

in its models or hypotheses, to establish mutual beliefs and confirm expectations, and to

negotiate responsibility for the different tasks during event handling. Some key

challenges include:

a. To determine an efficient way to deploy multiple Autonomous

Underwater Vehicles (AUV) for collaborative work such as mine counter-measures

missions.

b. To determine what is the optimal number of AUVs to be used for a

scenario (e.g., based of time of completion).

c. To investigate amount of deviation between real-world dynamics and

simulated ones in a virtual environment.

d. Ability to play out more scenarios at less cost compared to live sea-trials.

This chapter discusses the potential use and design of AUV agents.

122

Following the MAS = {Environment, Objects, Agents, Relationships, Operations,

Laws} approach [Ferber 1999], the various components of the system are discussed in the

following sections.

B. ENVIRONMENT
The AUVs operates in the ocean (sub-surface). The area of operation is

determined by the physical constraints of the AUV, as depicted below:

a. Endurance. The fuel tank size of the AUV is fixed.

b. Speed. The maximum speed of the AUV is fixed.

c. Sensor.

d. Communications.

For purposes of simulation, there is a finite number of AUVs, maximum five.

Similarly the maximum number of Communications Stations (include land, air and sea-

based) is set to five. The need to limit the number of AUVs and Communications

Stations is to better model the real-world environment, where it is impossible to have an

infinite number of resources. For the experimental runs, it is possible that zero or more

obstacles may be placed in the environment.

Figure 110. Agent Boundary.

123

Figure 111. AUV operating environment.

C. OBJECTS
List of objects and their attributes:

1. AUV

S/N Attribute Description

a. ID (unique numeric value) This serves as an identifier for each AUV. The identifier is
used to distinguish between multiple AUV agents in a
networked environment. It is generated programmatically
by the AUV Workbench at runtime.

b. Position (numerical value in meters) Indicates the location of the AUV in 3D space; i.e., X, Y
and Z coordinates.

c. Orientation (numeric value in
degrees)

Indicates the row, pitch and yaw of the AUV.

d. Heading (numeric value in degrees) Determines which direction the AUV is heading.

e. Speed (numeric value in knots) Speed of the AUV.

f. Endurance Based on fuel consumption and the time it has been
operating.

124

S/N Attribute Description

g. Type of Sensor Type of sensor available on-board the AUV.

h. List of Comms Stations Keep a list of communications stations.

i. List of Obstacles Historical list of obstacles encountered.

j. Physical Physical dimensions of the AUV, including maneuverability
limitations, which constraint the maximum turning radius of
the vehicle.

k. Status A list of possible status: “Ready”, “Damaged”, “On-shore”,
“Deployed” and “At Comms Station”.

Table 29. AUV Attributes.

2. Sensor

S/N Attribute Description

a. Name (string value) Description of sensor.
b. Category (string value) Which category does the sensor belongs to; e.g.,

sonar or optical (static picture or motion video)?
c. Range (numeric value in meters) Which category does the sensor belongs to; e.g.,

sonar?

d. Status A list of possible status: “Ready”, “Damaged”, “On-shore”,
“Deployed” and “At Comms Station”.

e. Footprint (numeric value in area per
square meters)

What is the coverage of the sensor?

f. Position of AUV (enumeration) Left, right, up or down. Therefore an AUV can have
4 sensors mounted.

g. Readiness State (Boolean value) Up or down.

Table 30. Sensor Attributes.

3. Communications Station

S/N Attribute Description

a. Name (string value) Description of comms station.

b. Category (string value) Type of station; e.g., ship-based, land, aircraft or sub-
surfaced vehicle. Also include whether it is stationary or
moving.

c. Position (numerical value in meters) Indicates the location of the Comms Station in 3D space
i.e., X, Y and Z coordinates.

Table 31. Communications Station Attributes.

125

4. Obstacle

S/N Attribute Description

a. Name (string value) Description of obstacle.

b. Category (string value) Type of obstacle (e.g., mines and marine life such as fish
and kelp).

c. Position (numerical value in meters) Indicates the location of the position in 3D space as
detected by the AUV.

Table 32. Obstacle Attributes.

5. Mission Plan
To be loaded into AUVs. Mission plans are also used to define the initial goal of

the AUVs.

S/N Attribute Description

a. Name (string value) Description of Mission Plan for identification purposes.

b. AUV specific information. Initial position and orientation of AUV.

c. List of waypoints Positional check-points for the AUV to be at, for a given
time.

d. Start/End points AUV launch position and retrieval/docking positions.

Table 33. Mission Plan Attributes.

6. Launching/Pick-up Point
The position where the AUV is launched and picked up upon completion of goals

or when out of fuel/time.

D. AGENTS AND ACTORS
The presence of multiple agents impact event handling in several ways. First, an

agent may notice an event that does not directly concern it, but impacts another agent. In

this case, the detecting agent can consider notifying the other agent about it. Second,

there is the possibility that multiple agents detect the same event simultaneously. If this

happens, the agents must coordinate their event-handling activities to avoid confusion

and counter-productive work. Third, other agents can serve as a source of information

(solicited or otherwise). Some agents may be in a better position with respect to the

knowledge they have or can easily obtain to do diagnosis or important assessment, and

others may be better situated to carry out the responses. At the very least, a detecting

126

agent notifies the affected agents of actions it is taking, whether in service, diagnosis, or

in response to an event. Figure 112 illustrates the relationships between inputs/outputs

and the agent interior.

Figure 112. Agent Overview.

Input Suite Output/Actuator Suite

Mission Plan. Percentage of completion of Mission Plan.

Initial position, orientation and speed. Move the AUV around the environment.

Sensor inputs. AUV attributes.

Inputs from Communications Stations; e.g., to
change target priority/position.

All attributes can be accessed via “setter” and
“getter” methods; e.g., “getCurrentPosition()”

Unique ID. To uniquely identify an AUV agent.

Table 34. Agent input and actuator suite.

Each AUV agent has the following attributes/states stored in the “brain” of the

agent. The agent interior is hidden from other agents unless the information is exposed

via the agent’s output or actuator suite.

• Endurance. Elapsed time is computed at the start of the experiment based

on the amount of fuel available.

• List of obstacles encountered. Obstacles include mines, marine life and

other AUVs.

• Mission scripts of AUV commands. List of waypoints and the

corresponding arrival/departure time at each waypoint. To improve

127

interaction between both AUVWorkbench and other applications, the

mission scripts/commands are defined in XML format (see sample

Mission Script below).

<?xml version="1.0" encoding="UTF-8"?>
<AUVMissions xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="C:/AUVWorkbench/bin/scripts/missionScripts/AUVMiss
ion.xsd">
 <Mission>
 <Profile/>
 <Commands>
 <Position course="0" depth="5" portPropSpeed="27"
 standoff="2" starboardPropSpeed="26" thruster="on"
 timeout="50" x="12" y="55"/>
 <Waypoint course="180" depth="15" portPropSpeed="27"
 standoff="" starboardPropSpeed="26" thruster="on"
 timeout="5" x="95" y="55"/>
 <Waypoint course="180" depth="15" portPropSpeed="27"
 standoff="" starboardPropSpeed="26" thruster="on"
 timeout="5" x="122" y="72"/>
 <Waypoint course="270" depth="5" portPropSpeed="27"
 standoff="" starboardPropSpeed="26" thruster="on"
 timeout="5" x="68" y="64"/>
 <Hover course="270" depth="5" portPropSpeed="27" standoff=""
 starboardPropSpeed="26" thruster="on" timeout="5" x="12" y="70"/>
 <Speed speed="0"/>
 <Thruster enabled="false"/>
 </Commands>
 </Mission>
</AUVMissions>

S/N Element Description Measurement Unit

1. AUVMissions Root element. -

2. Mission There can be many “Mission”
elements in the same Mission script.

-

3. Profile To be used to define area of
interest/operations.

-

4 Commands List of commands to be sent to the
AUV.

-

5. Position, Waypoint,
Hover

Positional data. -

6. Speed Speed of both port and starboard
thrusters.

Revolutions per minute.

7. Thruster Rear thrusters. Boolean.

8. Timeout Time period to wait. In seconds

Table 35. Mission script XML tag set.

128

The same mission plan is loaded into all the AUVs. The course of action is

negotiated between the AUV agents. Each AUV is able to determine its location based

on its heading, speed and time elapsed (with reference to the start point). When a

Communications Station is within the AUV’s transmission range, the agent polls the

station for its position. Using the coordinates returned by the Communications Station

and distance between the Communications Station and AUV, the agent tries to check

whether its internally computed position is correct. Here is how the goals are defined:

S/N Goal Description/
Measurement Method

Course of Action

1. Movement from
point-to-point

Moving to a specified
position (defined in the
Mission Plan) within
stipulated time (with a user-
definable tolerance; e.g., 15
minutes).

Update “WAYPOINT REACHED”
status in Mission Plan.

It tries to update the Comms Station
or any AUV within its vicinity.

2. Movement
within Area of
Interest

Move into a predefined
region of operations.

-

3. Movement by
following a
leader

2 possible scenarios:
• Right from the start,
follow a pre-determined
leader.
• Upon receipt of
indication that a detection
has occurred.

-

4. Object/Obstacle
Detection

Based on sensor input, the
agent is able to know the
general location of the
obstacle and whether it is
moving or stationary.

It is possible for an obstacle
to be larger than the sensor’s
field of view.

Slow down and try to identify the
obstacle (a mine, another AUV or
fish?).

If there is a high probability that it is a
mine, it tries to get another AUV to
double-check. And at the same time,
it tries to inform the Comms Station.

5. Object/Obstacle
Identification

Detection is normally
followed by identification and
confirmation of target
objects.

-

6. Collision Occurs when the AUV is
caught “off-guard” due to
limited sensing capability
(note: the sensors on-board
do not allow the AUV to have
full sensing of its neighboring
environment).

Locate other AUVs that are close-by.
Locate Comms Stations that are
close-by. Surface and/or dock if
necessary.

129

S/N Goal Description/
Measurement Method

Course of Action

7. Position Update When it is within range of
another AUV or Comms
Station, it checks whether
the position it has computed
is correct.

If position is wrong (outside a
Tolerable limit; e.g., 25m), it makes
adjustment and tries to move to the
desired position.

Once at the correct position or along
the way, it checks whether the list of
waypoints it had supposedly
completed is correct (within a
tolerable limit; e.g., 25m).

8. Endurance Based on the time remaining,
it extrapolates whether there
is enough time to complete
its task.

Speed up or slow down so that all its
targets/waypoints can be achieved.

9. Communications Transmission of data back to
comms stations.

-

Table 36. Agent goal definition.

For each of the goals defined, there is a priority (similar to “traffic-light” system)

assigned to them. The priority shall have three states – low, medium and high.

E. RELATIONSHIPS
1. Define initial goals and update status as required (Mission Plan ↔ AUV).

2. Encounter or detect an obstacle (Obstacle AUV).

3. Sensor Input (Sensor AUV).

4. Transmit findings to Communications Stations or receive positional

data/new orders (Communication Stations ↔ AUV).

F. PROCESSES AND OPERATIONS
1. Follow waypoints defined in Mission Plan.

2. Compute its position internally based on its speed and elapsed time.

3. Update “waypoint reached” status upon arriving or bypassing a waypoint.

4. Upon obstacle detection or encounter, look for closest AUV agent and/or

Communications Stations to share information.

130

5. When within range of another AUVs, share the following information; 1)

own percentage of Mission Plan completion; 2) own position.

6 When within range of Communications Station, the AUV checks whether

its own computed position is correct by referencing the Communications Station’s

position (pre-loaded into AUV). If not, perform compensatory action. In addition, it

checks whether the list of waypoints that it thought it passed is correct.

G. SUMMARY OF LAWS
1. Communications between AUV-AUV and AUV-Communication Stations

are possible only when within range. This is a “Many-to-Many” relationship.

2. Communications shall be initiated by the AUV or Communications

Stations.

3. Communications Stations are manned or remotely operated by humans.

Therefore their locations are always precise since additional equipment is available to

geo-reference them (GPS-enabled). All Communications Stations’ coordinates are pre-

loaded or made known to AUV agents.

4. To simplify the system, there are two types of sensors, namely sonar and

optics. Both types of sensors shall operate ideally with the given range and coverage. In

the real-world, these sensors rarely operate to their optimal performance due to oceanic

conditions.

5. The launching point and the retrieval point of the AUV may differ.

6 The team of vehicles is moving in an environment of known dimensions,

searching for target of interest. The vehicles are assumed to be equipped with: 1) target

sensing capabilities for obtaining a limited view of the environment; 2) wireless

communication capabilities for exchanging information and cooperating with one

another; and 3) computing capabilities for processing the incoming sensor data and

making dynamic guidance decisions.

7. For each AUV agent, there is only one Mission Plan.

131

8. Fuel consumption by the AUV is constant; therefore the AUV is able to

operate for a fixed time period; e.g., 3 hours.

9. The agents are equipped with sensors to view a limited region of the

environment they are visiting, and are able to communicate with one another to enable

cooperation. The agents are assumed to have some “physical” limitations including

maneuverability limitations, fuel/time constraints and sensor range and accuracy.

H. AGENT IMPLEMENTATION

1. Concept of Connector-Ticket Pair
Packaging and Tagging of Raw Inputs. Raw inputs from sensors (e.g., sonar or

video feed) are first packaged. Packaging involves formatting the data into an agent-

readable form (e.g., following a particular XML schema or template). This is followed

by tagging. The tagging process is to add connectors and/or tickets to the packaged data.

The connector-ticket pairs allow the data to interact with the agent’s set of connector-

ticket pair of goals. Finally the tagged data is passed into agent’s space for interaction.

Integration networks (IN) are formed as related (in terms of time and event) tagged data

is grouped together. In addition, if double-scope blending takes place, new generic

spaces can be created [Turner 2002]. With the creation of new generic spaces, the agent

is in fact shaping its perception of the environment.

Figure 113. Connector-Ticket - Packaging and Tagging.

Matching tagged data. At the end of each tagged data, there are either one or

many connectors that match the ones that are extended from the agent’s goals (See Figure

108). Tagged data and connectors form a ticket. When there is a match, the agent may

choose to retract the fulfilled goal or trigger a new set of goals. At the moment, these

actions are defined as a template within the agent. With better understanding of the

132

conceptual blending principles, it may be possible to get the agent to formulate new goals

that will aid in its fulfillment of goals/functions.

Below is a possible scenario on how goals can be altered based on the agent’s

perception of the environment and its interaction with other agents through the use of

connectors and tickets.

At the start of the run, agents are given basic goals; e.g., “Move along a

predefined path or an area of interest within a given time”. If the AUV sensors detect an

object, the basic goals are either upgraded or replaced (i.e., retracted) by more complex

ones. The complex goals may vary from getting another AUV to perform identification

or confirmation of contact, or to track the object/obstacle for a predefined time period, or

surface and transmit data back to communications stations.

Figure 114. Connector-Ticket Matching.

I. AGENT-TO-AGENT COMMUNICATIONS

1. Agent Identifier
The system makes use of the chat/Jabber ID (e.g.,

XTCServlet@xchat.MovesInstitute.org) to distinguish between multiple agents across a

list of networked AUV Workbench applications.

For each workbench, there is one agent identifier. The user is able to change the

agent’s identifier from within the workbench. Note: the workbench must have

connectivity to a chat/Jabber server.

133

2. Communications
Extensible Messaging and Presence Protocol (XMPP) is used as the means for

communications between agents. The techniques for packaging and transporting agent

messages via XMPP are the same as those discussed in Chapter IV.

Figure 115. Agent-to-agent communications using XMPP.

Figure 116. Human and Agent interaction via Jabber chat room.

3. Strategy for Data Collection

• Compute number of AUVs and Communications Stations available.

• Compute the percentage of completion of Mission Plan.

• Keep track of obstacles encountered (mines and AUVs).

134

4. Data Analysis

a. Initialization Phase
The system randomly assigns a unique ID for each of the AUV agent. The

mission plan is loaded into the AUVs together with start and end locations, and

Communications Station locations.

Once the Mission Plan has been loaded, the agent computes the feasibility

of completing the plan, within the required time allowed (or fuel constraint). If not, it

informs the user to make changes to the Mission Plan. If the plan is feasible, the agent

generates an internal “Search Map”. Unvisited waypoints (in RED, Figure 117) are

marked. Similarly for Start/End points (in GRAY, see Figure 117) and the locations of

Communications Stations (in CYAN, see Figure 117).

b. Start/During the Run (AUV Execution)

• When a waypoint is reached, it is marked (in GREEN, Figure 117).

The time is recorded and compare against the time specified in the

Mission Plan. A tolerance of 5-10 minutes is allowed. If the time

discrepancy is too great, the agent tries to compensate by

increasing speed to the next waypoints.

• When the agent senses an obstacle, it slows down and tries to

identify what it is (e.g., by shape and size). To identify the

obstacle, it instructs the vehicle to move around the obstacle to

gather more data. If a particular type of obstacle (e.g., mine) has

been found, it tries to inform the Communications Stations and

other AUVs. And if neither an AUV nor Communications Station

is within its vicinity, it proceeds to the closest Communications

Stations and/or moves towards a previously known AUV's

direction. The obstacle is marked in the agent’s internal “Search

Map”. Additional information on the obstacle such as size,

moving/stationary and type are also captured in the corresponding

grid square in the “Search Map”.

135

• When in contact with another AUV or within the transmission

range of Communications Station, it shares its position, orientation,

heading and speed with it. Similarly the other AUV shares the

same attributes.

c. Possible Strategies

• Follow the path where there is minimum overlap with other agents.

Since the agents are able to share their new information about the

search region, it is natural that they may select the same search

path as other agents (especially since in general they will be

utilizing the same search algorithm). This will be more pronounced

if two agents happen to be close to each other. However, in order

to minimize the global uncertainty associated with the emergent

knowledge of all agents, it is crucial that there is minimum overlap

in their search efforts. This can be achieved by including a cost

function component that penalizes agents being close to each other

and heading in the same direction. This component of the cost

function can be derived based on the relative locations and heading

direction (angle) between pairs of agents. [Polycarpou 2001]

• Follow the path that maximizes coverage of the highest priority

targets. In mission applications where the agents have a target

search map with priorities assigned to detected targets, it is

possible to combine the search of new targets with coverage of

discovered targets by including a cost component that steers the

agent towards covering high priority targets. The cost component

is based on the target’s characteristics such as shape, size, mobility

and its overall effect on the mission (e.g. mines have a higher

priority). This leads to a coordinated search where both coverage

and priorities are objectives.

• Follow the path toward highest priority targets with most

certainty. In some applications, the energy of the agent is limited.

136

In such cases it is important to monitor the remaining fuel and

possibly switch goals if the fuel becomes too low. For example, in

search-and-engage operations, the agent may decide to abort

search objectives and head towards engaging high priority targets

if the remaining fuel is low. Environment factors such as sea state

will also affect the operational effectiveness of the AUV sensors as

well as its maneuverability.

• Follow the path toward targets where there will be minimum

overlap with other agents. Cooperation between agents is a key

issue not only in search patterns but also in engagement patterns. If

an agent decides to engage a known target, there needs to be some

cooperation such that no other agent tries to go after the same

target; i.e., a cooperative engagement strategy is utilized. On the

other hand, this strategy will depend on the availability of the

weapon systems onboard the AUV. Multiple attacks will increase

the cumulative probability of kill, but this has to be weighted

against the probability of not having resources to search for other

targets or even to react in time to another target once the AUVs are

on-route to the first known target. At the same time, there is also a

probability of losing the first target and reacquisition will be

required before engagement can commence.

137

Figure 117. AUV Agent - Search Map.

J. SUMMARY

This chapter discusses the design of the AUV agent attributes and possible

strategies to define the agents’ goals. Means of communications between agents using

Jabber instant messaging were presented. An example application to construct a search

map is described.

138

THIS PAGE INTENTIONALLY LEFT BLANK

139

VI. CONCLUSIONS AND RECOMMENDATIONS

A. INTRODUCTION
The main purpose of this work was to design and implement a common platform

for AUV mission planning and analysis. The end product is the AUV Workbench. Using

Java-based open-source libraries for functionality, Extensible Markup Language (XML)

for data storage and exchange, and a component-based framework, the AUV Workbench

provides an intuitive cross-platform-capable tool with extensibility to provide for future

enhancements such as agent-based control, asynchronous reporting and communication,

and loss-free message compression.

In addition, this thesis has explained the suitability of Jabber instant messaging

for text and file messaging in a tactical environment. Exemplars have shown that the

XML backbone of this open-standards technology can be leveraged to enable both human

and agent messaging, providing powerful improvements over current systems.

B. RECOMMENDED FUTURE WORK

1. Overview
This thesis established the foundation for future work for modeling and

simulation of AUVs. This work has demonstrated that the AUV Workbench provides a

test-bed for emergent AUV technologies and can assist in the development of traditional

and agent-based methodologies. Additionally, the flexible design of the Workbench

facilitates potential extensions to serve operational needs. A list of recommendations is

given in this section.

140

Figure 118. Modular overview of future work.

2. AUV Multi-Agent System Framework
Most AUV missions neither require nor permit constant human oversight.

Operating conditions, adverse environmental conditions or inherent limitations of

underwater communications paths can cut off communications with the vehicles. For

example, a covert surveillance or reconnaissance mission precludes all but the most

minimal communication with the vehicle. Therefore if a virtual AUV agent is able to

simulate the real AUV in water, it is able to provide human operators with a visual or

audible cue on its whereabouts. When the real AUV surfaces, the virtual AUV

synchronizes its position and status (e.g., sensor data or equipment failure). While the

actual AUV is in water, the human operator may re-task the AUV using AUV agent, with

the re-tasked orders transmitted to the actual AUV.

Ideally, AUVs are capable of acting truly autonomously for long periods of time

in challenging, unpredictable environments. As the missions undertaken by the AUV

become more complex, it becomes difficult for the human to keep up, making agents

potentially useful. A set of rules is given to the agents. The human operator intervenes

when there is a conflict or when a critical condition arises (i.e., system failure or mine

detection).

141

Just as the XML-based mission script provides low-level commands to the AUV,

the same mission script can be extended to define goals in an agent system. This is

similar to strategic level commands. (Duane 1996) The agents can be developed using

Connector-based MultiAgent System (CMAS) library. (Hiles2004)

AUV reactions are based on its onboard suite of sensors (e.g., when a mine is

encountered, loiter to verify, or surface to report). Picture the following: an AUV is in

water, a human controller on ship or shore running the AUV Workbench, introduces

(drag-and-drop) a virtual obstacle into the virtual environment; a daemon agent pushes

this piece of information out to the real AUV’s sensors to “simulate” the detection of an

obstacle; the AUV in water reacts accordingly.

Instead of having cardboard enemies, we have a more realistic agent that models

the enemy. This would help blur the line between simulation and real world operations

and give a “practical” use of simulations. Of note, there are still issues such as bandwidth

and latency with AUV communications that needs to be solved. Bolder AUV

deployment concepts can be tried out; e.g., perform dynamic re-tasking once the AUV is

in the water. The agent system provides data to support or confute. At the same time, the

system provides details on what is the “cost” involved (in terms of potential loss of target

and its endurance) when an AUV is directed to another supposedly higher priority target.

3. Development of Collaborative Sensing Strategy Using Dissimilar
AUVs

The current robot execution module is based on the NPS ARIES AUV. This

software can be replaced by another AUV from an industry partner or academic

institution. Once implemented, NPS will have a wide variety of AUVs to try out

different scenarios with dissimilar AUVs, instead of just the NPS-specific vehicles.

Picture a tactical scenario whereby a planner defines the area of operations, its conditions

and constraints. From a library of AUV models (which includes the virtual 3D

representation and the robot software), the system comes out with a list of

recommendations. The list may comprise dissimilar AUVs. The most important point is

not who’s AUV is better, but how can the mission best be accomplished.

142

The posting of the AUV Workbench application online as open source with

executeable binaries makes this vision more realizable, now that developers and partners

from other research institutions or industry, can download the application and work on it.

4. Simulation of Targets/Obstacles
The topic of AUV obstacle avoidance is a well-researched area. The challenge is

to develop an obstacle avoidance agent that runs alongside the Workbench. At the same

time, it is necessary to develop an obstacle generation or simulation module. The

obstacle-simulation module dynamically introduces obstacles such as marine life or

mines into the virtual environment. At the moment, under the Event Monitoring module,

obstacles are displayed as targets. These targets contain only static information and are

not “live”. This will cause issues when multiple sightings of the same target (e.g., mine)

are reported. These will be plotted multiple times in the Workbench. A better approach

is to make “live” targets, i.e., link them to a centralized agent that is responsible for the

tracking and aggregation of data pertaining to targets. There can be an agent for each

type of obstacles or targets, one for mines and another for ships. A target representation

language using XML can be defined. A mine target may look like the one below:

<?xml version="1.0" encoding="utf-8"?>
<Target category="mine" type="subsurface"
 classification="unknown" reportedBy="AUV1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="C:\auv\Workbench\Targets\auvTargetLangu
age.xsd">
 <Report dateTime="20040101103000">
 <Position x="100" y="100" depth="15"/>
 <Size length="1" breadth="1" height="1"/>
 </Report>
 <Report dateTime="20040101104500">
 <Position x="100" y="103" depth="13"/>
 <Size length="1" breadth="1" height="1"/>
 </Report>
 <Report dateTime="20040101104500">
 <Position x="100" y="103" depth="13"/>
 <Size length="1" breadth="1" height="1"/>
 </Report>
 <Details desc="More details here">
 <Url>http://tacticalsvr/sightingMine.htm</Url>
 <Url>http://tacticalsvr/video.jpg</Url>
 </Details>
</Target>

Figure 119. Proposed XML-based representation of Mine Target.

143

5. Simulation of Environmental Conditions
The real world conditions are more dynamic and unpredictable. An environment

agent is responsible to feed environmental data such as sea-state and ocean current to the

Workbench. To lend more realism to the virtual environment, a web service that

subscribes to real weather data can be developed. A potential sub-module is to simulate

interference and unreliability in communications due to weather conditions.

6. Plug-in Framework
To facilitate further development and use of the Workbench, an important

addition is to have a robust component plug-in framework. This framework would

consist of a plug-in manager that allows the user to add, remove or configure plug-in

modules. This approach is more flexible and robust compared to compiling everything

into the Workbench, which may or may not get used. The set of rules and configurations

are defined in an XML schema. A sample representation is given below:

<?xml version="1.0" encoding="utf-8"?>
<Class name="Plugin" returnType="String">
 <Method name="display" returnType="void">
 <Parameter type="int" default=""/>
 <Parameter type="String" default="Description"/>
 </Method>
 <Argument value="mine.xml"/>
 <Argument value="mine.gif"/>
</Class>

Figure 120. XML-based representation of Plug-in Class

One approach to develop the plug-ins framework is the use of Java Reflections

whereby introspection of classes (plug-in module) can be performed at runtime.

Reflection enables Java code to discover information about the fields, methods and

constructors of loaded classes, and to use reflected fields, methods, and constructors to

operate on their underlying counterparts on objects, within security restrictions. This is

an advanced topic in Java programming. Another possible approach is to use Jabber

instant messaging for the communications between the plug-in modules and the

Workbench application. Again, the messages are defined in an XML schema. The

Jabber instant messaging solution developed in this thesis will be useful as it handles data

as well as binary files.

144

7. AUV Mission Manager
An AUV Mission Manager should be introduced to handle the definition and

execution of multiple AUV mission plans. The Mission Manager is responsible for the

invocation and message passing between the various AUVs in the 3D display and agent

environment.

A good approach to implementing the Mission Manager is to have decentralized

“Execution” and “Dynamics” processes. These processes might be written as web

services or agents using the Jabber protocol for data and file message exchange.

8. User Interface Enhancements

a. Manipulate Multiple Missions in 2D Mission Planner
At the moment, the underlying software architecture supports multiple

missions, but the 2D Mission Planner graphics display does not. A mission layer

manager has to be added to facilitate an intuitive way for manipulating multiple missions.

At the same time, it must support the ability to tie the mission scripts to specific virtual

AUVs via DIS application, site and entity ID fields. A possible representation of the

mission layer manager is given in Figure 121. The “eye” icon allows the user to show or

hide the mission on the display.

Figure 121. Mission Layer Manager in 2D Mission Planner module.

b. Animated Icons in 2D Mission Planner and Mission Command
List

To promote a more intuitive user interface, animated icons can be

introduced to depict the status of a command; e.g., when the propeller is turned on, it is

animated. This gives a user a better appreciation of the current status of the mission

Show or hide
mission

Current active
mission

Locked mission to
prevent editing

145

commands. Similarly, the concept can be used in the 2D Mission Planner to depict

important targets with a glowing red boundary. The concept of target decay (i.e.,

freshness of data) can be introduced using colors too; e.g., a new target has a solid color

and as time passes, it becomes grayed out.

9. Distributed Robot (Execution) and Virtual Environment (Dynamics)
Processes

At the moment, “Execution” and “Dynamics” processes are running on the same

machine and Java Virtual Machine (JVM). The two processes use DIS multicast packets

to talk to each other. In principle, both these processes are already network-capable. If

both the processes are shifted to a server, it is possible to achieve a performance gain as it

will offload the JVM. One approach is to implement the robot execution and virtual

environment hydrodynamics using web services. The Workbench can toggle between

running them on a server or local. Another approach is to use Jabber instant messaging.

The AUV Workbench will package the active mission script using the method discussed

in this thesis. The packaged mission script is then posted in a pre-defined chat-room.

The “Execution” and “Dynamics” processes are Jabber-enabled so that they will pick up

the packaged mission script and execute it.

With the server setup, the Execution and Dynamics processes are consolidated at

a central location. This aids in development and testing.

The same server that functions as a Jabber server (for agent-to-agent

communications through chat protocol) can also be configured as a web server

(specifically Apache Tomcat).

10. Compression and Error-Correction Algorithms
Data compression is important in the operation of AUVs. Water density inhibits

transmission of radio and light waves. Although sound travels quite well, currently

achievable data transmission rates are poor in comparison to land-based communications.

146

A likely candidate for data compression is an in-house developed compression

scheme, Cross Format Schema Protocol (XFSP) [Serin 2003] or XML Schema-based

Binary Compression (XSBC). XSBC is schema-based XML binary serialization and

compression.

In addition to compression, data error correction and recovery schemes can be

introduced as acoustic shallow-water data transmissions are known to be unreliable and

an autonomous entity will often experience problems when passing a message to its

intended receiver. According to thesis work performed in 1995, Forward Error

Correction (FEC) can reduce the number of required retransmissions by 3 to 15 percent.

FEC is a “method of data encoding that gives the receiver the ability to correct data

received in error up to a preset bound.” FEC can be easily implemented, the most basic

implementation requiring the use of a simple Hamming code. [Reimers 1995] As with the

implementation of an XML-based mission control language, one goal of FEC is

standardization of the underwater acoustic data communications community (after

Reimers, 1995).

The study and introduction of encryption and decryption algorithms is important

as AUVs are tasked to perform covert missions.

11. Mapping Capability in Mission Planner
The current version of the mission planner does not have any mapping capability.

There are several commercial and Open Source products available to add mapping and

geo-referencing capability to the Workbench. OpenMap is an Open Source Java Beans

based toolkit for building applications and applets needing geographic information. Using

OpenMap components, you can access data from legacy applications, in-place, in a

distributed setting. At its core, OpenMap is a set of Swing components that understand

geographic coordinates. The technology base underlying OpenMap was developed under

government funding. From 1987 - 1992, BBN was involved in a DARPA collaborative

mapping research project http://openmap.bbn.com/ (Accessed February 2004). Another

open-source product is GeoTools. GeoTools is an open source Java toolkit for developing

interactive geographical maps. The emphasis is on client side mapping applets that

147

require little or no server side support. The main file format for the moment is the ESRI

Shapefile (.shp). http://geotools.sourceforge.net/ (Accessed February 2004). There are

two commercial solutions identified. They are iLog Jviews and ESRI Java MapObjects.

ILOG JViews Maps Package provides a full range of features, including geo-referencing

for easy placement of assets in proper locations, mix-and-match vector and raster data in

the same map and the ability to handle multiple projections of the earth's surface It has

built in load-on-demand for efficiently handling large sets of map data www.ilog.com

(Accessed February 2004). An important feature as the Workbench acquires Geographic

Information Systems (GIS) capability. ESRI Java MapObjects is a powerful collection of

pure Java components that allows developers to build custom, cross platform, mapping

and spatially enabled applications. With a robust collection of pure Java GIS and

mapping components, including a suite of pre-defined visual JavaBeans, MapObjects—

Java Edition provides developers with the tools to create client or server-side applications

for stand-alone deployments or delivery over the Web www.esri.com (Accessed February

2004). A list of open-source and free GIS related software projects are available on

http://opensourcegis.org/ (Accessed February 2004).

C. SUMMARY
Conclusion and future work recommendations are collected in this chapter. The

goal of implementing a common platform for AUV mission planning and analysis has

been achieved. At the same time, this thesis has shown that Jabber, an open-standards

technology for instant messaging, is a viable solution to facilitate text and file messaging

for humans as well as agent communications. Exemplars have demonstrated how in-

mission and post-mission event monitoring by human operators can be achieved via

simple web page, standard clients, or custom instant messaging client. Finally, the AUV

Workbench is a potential tool for the development of multiple-AUV deployment

concepts, tactics and doctrine.

148

THIS PAGE INTENTIONALLY LEFT BLANK

149

APPENDIX A. ACRONYMS AND ABBREVIATIONS

Acronym / Notation Definition
2D 2 Dimensional
3D 3 Dimensional
API Application Programming Interface
ARIES Acoustic Radio Interactive Exploratory Server – NPS AUV
AUV Autonomous Underwater Vehicle
DTD Document Type Definition – XML
M&S Modeling and Simulation
NPS Naval Postgraduate School
REMUS Remote Environmental Measurement UnitS
RF Radio Frequency
URI Uniform Resource Identifiers
URL Uniform Resource Locator
URN Uniform Resource Names
UUV Unmanned Underwater Vehicle
X3D Extensible 3D Graphics
XML Extensible Markup Language
XMPP Extensible Messaging and Presence Protocol
XMSF Extensible Modeling and Simulation Framework
XSD XML Schema Definition
XSL Extensible Style Language
XSLT Extensible Style Language Transformation
XTC XML-based Tactical Chat

Table 37. Acronyms and abbreviations

150

THIS PAGE INTENTIONALLY LEFT BLANK

151

APPENDIX B. LIST OF ARIES AUV-SPECIFIC EXECUTION-
LEVEL COMMANDS

A. INTRODUCTION
This appendix consists of the list of ARIES AUV-specific execution level

commands along with attribute types and example values. This language remains under

developed; particularly with respect to in-water exception handling.

B. XML-BASED EXECUTION LEVEL COMMANDS

1. <Depth> Element

<Depth> sets commanded vehicle depth. Sample given below:

<Depth value="10"/>

S/N Command Description Format/Type Default Required

1. value Depth value Decimal 0.0 N

2. <EnterTube> Element

<EnterTube> commands the vehicle to enter a specified recovery tube. Vehicle

initial position needs to be directly in front of opening, but heading can be off. Sample

given below:

<EnterTube recoveryRange="5" recoveryHeading="270"/>

S/N Command Description Type Default Required

1. recoveryRange Range from vehicle's current location to
final recovery position.

Decimal - Y

2. recoveryHeading Recovery heading (must match
orientation of the tube).

 - Y

3. timeout Specifies a max allowable time for the
command (negative means no limit)
before failure.

Decimal -1.0 N

152

3. <FollowLight> Element

<FollowLight> commands the vehicle to follow a light source to a recovery

location. Sample given below:

<FollowLight/>

S/N Command Description Type Default Required

1. timeout Specifies a max allowable time for the command
(negative means no limit) before failure.

Decimal -1.0 N

4. <GpsFix> Element

<GpsFix> orders the vehicle to surface for a GPS fix or resume mission after a

obtaining a GPS fix. Sample given below:

<GpsFix status=”complete” timeOut=”5.0”/>

S/N Command Description Format/Type Default Required

1. status Operational status of
GPS unit.

GpsFixStatus = {“start”,
“inProgress”, “complete”, “failed”}

Enumerated list of possible GPS
fix statuses.

start N

2. timeout Specifies a max
allowable time for the
command (negative
means no limit)
before failure.

Decimal -1.0 N

5. <Heading> Element

<Heading> sets commanded vehicle heading (disables waypoint or recovery

control). Sample given below:

<Heading value="270"/>

S/N Command Description Format/Type Default Required

1. value Course heading. Decimal 0.0 N

153

6. <Help> Element

<Help> causes a list of valid commands to be printed to the console (if

available). Sample given below:

<Help/>

7. <Hover> Element

<Hover> commands the vehicle maintain position at a specified (x,y) position.

It can include heading and depth command. Sample given below:

<Hover x="200" y="100" z="15" heading="270" standoff="2.5"/>

S/N Attribute Description Format Default Required

1. x x-coordinate. decimal - N

2. y y-coordinate. decimal - N

3. z z-coordinate. decimal - N

4. heading Course heading. decimal - N

5. standoff Stand-off distance. decimal - N

6. altitudeControl Determines whether z is depth or height
above the bottom.

boolean false N

7. timeout timeOut attribute specifies a max allowable
time for the command (negative means no
limit) before failure.

decimal -1.0 N

8. <Lateral> Element

<Lateral> sets both lateral thrusters to cause vehicle to slide right or left

(turns off all automatic control modes). Sample given below:

<Lateral speed="10"/>

S/N Command Description Format/Type Default Required

1. speed Speed of thrusters. Decimal 0.0 N

154

9. <MissionScript> Element

<MissionScript> loads a new mission script from a specified file. Sample

given below:

<MissionScript fileName="sample.xml"/>

S/N Command Description Format/Type Default Required

1. path Directory or full path information. String N

2. filename File name. String Y

10. <Pause> Element

<Pause> temporarily suspends vehicle operation (for bench test or virtual world

use only), useful for getting evaluation checkpoints during testing. Sample given below:

<Pause/>

11. <Planes > Element

<Planes> sets bow and/or stern plane deflection angle (turns off all automatic

control modes). Sample given below:

<Planes which="stern" value="-25"/>

S/N Command Description Format/Type Default Required

1. which Set planes AvailablePlanes = {“bow”, “stern”,
“both”}

Enumerated list of manually
settable control planes.

both N

2. value Angle of deflection. Decimal 0.0 N

12. <Position> Element

<Position> updates of vehicle position in the world (new navigation fix has

been obtained). It sets GPS zero point if not previously done. Sample given below:

<Position x="12" y="55" depth="5"/>

155

S/N Attribute Description Format Default Required

1. x x-coordinate. decimal - Y

2. y y-coordinate. decimal - Y

3. depth Depth data. decimal - N

13. <Propeller> Element

<Propeller> manually set one or both propeller speeds. Sample given below:

<Propeller which=”port” rpm=”10”/>

S/N Command Description Format/Type Default Required

1. which Location. AvailablePropellers = {“port”,
“starboard”, “center”, “both”}

Enumerated list of manually
settable propellers.

both N

2. Rpm Speed. Decimal - Y

14. <Quit> Element

<Quit> ends the vehicle mission after zeroing all control settings (does not

initiate surfacing procedure). Sample given below:

<Quit/>

S/N Command Description Format/Type Default Required

1. mode ExitModes = {“normal”,
“missionAbort”, “systemAbort”,
“recallAbort” }
Enumerated list of possible
mission ending modes.

- N

15. <RealTime> Element

<RealTime> causes execution to run in realtime (or turns realtime execution

off). Sample given below:

<RealTime/>

156

S/N Command Description Format/Type Default Required

1. set Turn on or off. Boolean true N

16. <ResetTime> Element

<ResetTime> resets the vehicle clock time to a specified value. Sample given

below:

<ResetTime value="1.0"/>

S/N Command Description Format/Type Default Required

1. Value Decimal 0.0 N

17. <Rotate> Element

<Rotate> sets both lateral thrusters to cause vehicle to rotate (turns off all

automatic control modes). Sample given below:

<Rotate speed="-10"/>

S/N Command Description Format/Type Default Required

1. speed Speed of thrusters. Decimal 0.0 N

18. <Rudder> Element

<Rudder> sets rudder deflection (turns off all automatic control modes).

Sample given below:

<Rudder value=”0.5”/>

S/N Command Description Format/Type Default Required

1. value Angle of deflection. Decimal 0.0 N

157

19. <Sonar> Element

<Sonar> commands the vehicle to assume a specified fixed station relative to a

sonar target. Sample given below:

<Sonar sonarHardware="ST1000" scanMode="manual" bearing="180"
bearingType="relative"/>

S/N Command Description Type Default Required

1. sonarHardware Sonar models that may be
installed.

SonarHardwareModels =
{“ST1000”, “ST725”};

st725 N

2. Mode Sonar scan modes. SonarScanModes=
{“scan”, “track”,
“trackWhileScan”,
“manual”}

scan

N

3. bearing Direction. decimal 0.0 N

4. bearingType Angles measured from
bow/north clockwise when
viewed from above.
Matches a standard
compass rose.

BearingTypes=
{“relative”, “true”,
“magnetic”}

relative N

20. <Standoff> Element

<Standoff> resets the acceptable standoff radius in meters around hover-points

and waypoints. Sample given below:

<Standoff range=”15.0”/>

S/N Command Description Format/Type Default Required

1. Range Stand-off distance. Decimal 2.5 N

158

21. <TakeStation> Element

<TakeStation> commands the vehicle to assume a specified fixed station

relative to a sonar target. Sample given below:

<TakeStation sonarScanMode="target" targetRange="5"
targetBearing="90" commandRange="5" commandBearing="45"
heading="270"/>

S/N Command Description Type Default Required

1. sonarScanMode Determines whether the
vehicle will maintain station
by sonar scanning the
entire target or just the
edge.

TargetTrackModes =
{“targetEdge”, “target”}

Enumerated list of
sonar target tracking
modes.

targetEdge N

2. targetRange Approximate range to
target to enable sonar to
initially acquire (not
required if vehicle is
already tracking).

Decimal - N

3. targetBearing Approximate bearing of
target to enable sonar to
initially acquire (not
required if vehicle is
already tracking).

Decimal - N

4. commandRange Commanded range to for
vehicle to remain from the
target.

Decimal - Y

5. commandBearing Commanded bearing to the
target for the vehicle to
maintain.

Decimal - Y

6. heading Course heading. Decimal - N

7. timeout Specifies a max allowable
time for the command
(negative means no limit)
before failure.

Decimal -1.0 N

159

22. <Thrusters> Element

<Thrusters> enables or disables the vehicle's vertical and lateral thrusters (can

be overridden by some control commands). Sample given below:

<Thrusters on=”true”/>

S/N Command Description Format/Type Default Required

1. On Specifies a max allowable
time for the command
(negative means no limit)
before failure.

Boolean true N

2. which Location. AvailableThrusters =
{“lateral”, “vertical”,
“bowLateral”, “sternLateral”,
“bowVertical”,
“sternVertical”}

Enumerated list of manually
settable thrusters.

- N

23. <TimeStep> Element

<TimeStep> resets the elapsed time for each closed loop control cycle (default

is 0.1sec or 10 hz). Faster on-board computers and faster analog-to-digital (A/D and D/A)

conversions permits shorter timestep periods. Sample given below:

<TimeStep period=”0.5”/>

S/N Command Description Format/Type Default Required

1. Period Loop interval. Decimal

0.1 N

24. <Trace> Element

<Trace> turns vehicle trace feature on or off. Sample given below:

<Trace/>

S/N Command Description Format/Type Default Required

1. set Turn on or off. Boolean true N

160

25. <Wait> Element

<Wait> causes the vehicle to wait a specified time before beginning execution of

the next command. Sample given below:

<Wait time=”10”/>

S/N Command Description Format/Type Default Required

1. absolute Relative or absolute Boolean false N

2. time Time to wait. Decimal - Y

26. <Waypoint> Element

<Waypoint> commands the vehicle to transit to a specified location. Vehicle

will not stop when location reached. Sample given below:

<Waypoint x="25" y="50" z="75" obtainGpsFix="false"/>

S/N Attribute Description Format Default Required

1. x x-coordinate. decimal - Y

2. y y-coordinate. decimal - Y

3. z z-coordinate. decimal - Y

4. rpm Speed decimal - N

5. altitudeControl Determines whether z is depth or height
above the bottom.

boolean false N

6. timeOut timeOut attribute specifies a max allowable
time for the command (negative means no
limit) before failure.

decimal -1.0 N

7. obtainGpsFix Cause the vehicle to surface to obtain a
GPS fix enroute to the next waypoint.

boolean false N

8. fixDuration determines how long the vehicle will remain
surfaced to obtain a gps fix if the
obtainGpsFix attribute is true.

decimal - N

161

APPENDIX C. CDROM MATERIAL

A. DIRECTORY AND FILE STRUCTURE

1. Documentation

Directory location: <CDRom>\documentation

S/N Directory Filename Description

1. \ 04Mar_Lee_AUVWorkbench.doc Thesis (in Microsoft WinWord format).

2. \ 04Mar_Lee_AUVWorkbench.pdf Thesis (in Adobe Acrobat format).

3. \ AUVWorkbench.ppt AUV Workbench presentation (in
Microsoft Powerpoint format).
AUV Workbench icons and
component chart (in Microsoft
Powerpoint format).

4. \ AgentJabber.ppt Presentation slides using Agent
Seminar on 17 Feb 2004 (in Microsoft
Powerpoint format).

5. \ XTC.ppt XML-based Tactical Chat presentation
(in Microsoft Powerpoint format).

6. \reference * Reference material used in the
conduct of this thesis.

2. AUV Workbench Application

Directory location: <CDRom>\auv\Workbench\

S/N Directory Sub-directory
and files

Description

1. im Java source code to the Jabber Instant
Messaging and XTC Event Monitor modules.

2. main Java source code to the main user interface and
3D Visualization module.

3. mission Java source code to the two-dimensional mission
planner module.

4. util Java source code for Common utilities.

5.

\src

web Java source code to the web server

6. im Java classes to the Jabber Instant Messaging
and XTC Event Monitor modules.

7. main Java classes to the main user interface and 3D
Visualization module.

8.

\bin

mission Java classes to the two-dimensional mission
planner module.

162

S/N Directory Sub-directory
and files

Description

9. util Java classes for Common utilities.

10. web Java classes to the web server

11. image Icon and splash-screen image files (in GIF,
JPEG and PNG formats).

12. sound Sound files (in .WAV).

13.

META-INF\ Contains manifest.mf for the JAR.

14. \doc * HTML documentation.

15. \dynamics * Java application to the hydrodynamics for the
virtual environment.

16. \execution * C++ application to the AUV robot execution.

17. \Java Execution * Java application to the AUV robot execution.

18. \javadocs ., \im, \main,
\mission, \util,
\web, \xsbc

Java documentation of the source code.

19. \lib * Java libraries.

20. \Models * Sample VRML examples.

21. \Scripts * Mission scripts.

B. MAIN APPLICATION

The main package is the main user interface for the rendering of the entire user

interface including the placements of the user interfaces for the various modules and the

3D visualization.

Directory location: <CDRom>\auv\Workbench\src\main

S/N Filename Description

1. AMVW.java Main user interface for AUV Workbench.

2. AUV.java Data structure for AUV information (not used).
This is to be used for multiple AUVs in the same
scene.

3. AUVWorkbenchConfig.java AUV Workbench configuration data structure.

4. ConfigApp.java Application configuration data structure. Used by
configurable toolbar

5. Const.java Application global constants.

6. DynamicsExecutionThread.java Invoke a separate process dynamics (located in
..\dynamics\dynamics).

7. UITable.java User interface to display data in a tabular format.

163

S/N Filename Description

8. VrmlLoader.java Xj3D loader for VRML models.

9. X3DLoader.java Xj3D loader for X3D models (not used).

C. MISSION PLANNING

The mission package is responsible to render two-dimensional mission planner

view on the top-right display pane.

Directory location: <CDRom>\auv\Workbench\src\mission

S/N Filename Description

1. Mission.java Data structure to store Mission information.

2. MissionBoundBoxView.java User interface to define the mission bounding
box (area of interest) (Not used).

3. MissionCommand.java Generic mission command data structure.

4. MissionDepth.java Mission Depth command data structure. It
defines commanded vehicle depth

5. MissionDialog.java Mission information dialog user interface.

6. MissionDrawArea.java Drawing canvas/area to display Mission Script
graphically.

7. MissionEnterTube.java Mission EnterTube command data structure. It
commands the vehicle to enter a specified
recovery tube. Vehicle should be directly in front
of opening, but heading can be off.

8. MissionFollowLight.java Mission FollowLight command data structure. It
commands the vehicle to follow a light source to
a recovery location.

9. MissionHeading.java Mission Heading command data structure. It
sets commanded vehicle heading (disables
waypoint or recovery control).

10. MissionHelp.java Mission Help command data structure. It causes
a list of valid commands to be printed to the
console (if available).

11. MissionHover.java Mission Hover command data structure. It
commands the vehicle maintain position at a
specified (x,y) position. It can include heading
and depth command.

12. MissionInputOneView.java User interface to capture a single value input
(boolean, integer) from user. It is invoked by
MissionDialog.

13. MissionLateral.java Mission Lateral command data structure. It sets
both lateral thrusters to cause vehicle to slide
right or left (turns off all automatic control
modes).

164

S/N Filename Description

14. MissionListCellRenderer.java Customized cell rendering in a JList (e.g., loading
of icons and setting of colors).

15. MissionListView.java User interface to display Mission commands in a
Listbox. Sends ACTION_PERFORMED event
for double-click and ENTER key.

16. MissionMissionScript.java Mission Script command data structure. Loads a
new mission script from a specified file.

17. MissionPause.java Mission Pause command data structure. It
temporarily suspends vehicle operation (for
bench test or virtual world use only); useful for
getting evaluation checkpoints during testing.

18. MissionPlanes.java Mission Planes command data structure. Set
bow and/or stern plane deflection angle (turns off
all automatic control modes).

19. MissionPoint.java Mission Point command data structure.
MissionHover, MissionPosition, MissionWaypoint
inherit from this.

20. MissionPointView.java Mission Point user interface to manipulate
MissionPoint data (includes Hover, Position,
Waypoint).

21. MissionPosition.java Mission Position command data structure. It
updates of vehicle position in the world (new
navigation fix has been obtained). It sets GPS
zero point if not previously done.

22. MissionPropeller.java Mission Propeller command data structure. It
manually set one or both propeller speeds.

23. MissionQuit.java Mission Quit command data structure. It ends
the vehicle mission after zeroing all control
settings (does not initiate surfacing procedure).

24. MissionRealtime.java Mission RealTime Command Information. It
causes execution to run in realtime (or turns
realtime execution off).

25. MissionResetTime.java Mission ResetTime command data structure. It
resets the vehicle time to a specified value.

26. MissionRotate.java Mission Rotate command data structure. It sets
both lateral thrusters to cause vehicle to rotate
(turns off all automatic control modes).

27. MissionRudder.java Mission Rudder command data structure. It sets
rudder deflection (turns off all automatic control
modes).

28. MissionSonar.java Mission Sonar command data structure. It
commands the vehicle to assume a specified
fixed station relative to a sonar target.

29. MissionSpeed.java Mission Speed command data structure (not
used).

165

S/N Filename Description

30. MissionStandoff.java Mission Standoff command data structure. It
resets the acceptable standoff radius in meters
around hover-points and waypoints.

31. MissionTakeStation.java Mission TakeStation command data structure. It
commands the vehicle to assume a specified
fixed station relative to a sonar target.

32. MissionThruster.java Mission Thruster command data structure. It
enables or disables the vehicle's vertical and
lateral thrusters (can be overridden by some
control commands).

33. MissionTimeStep.java Mission Timesetp command data structure.
It resets the elapsed time for each closed loop
control cycle (default is 0.1sec or 10 Hz).

34. MissionTrace.java It turns vehicle trace feature on or off.

35. MissionViewer.java 2D mission script viewer/planner.

36. MissionViewerConfig.java 2D mission script viewer/planner configuration
file (Not implemented yet).

37. MissionWait.java Mission Wait command data structure. It causes
the vehicle to wait a specified time before
beginning execution of the next command.

38. MissionWaypoint.java Mission Waypoint command data structure. It
commands the vehicle to transit to a specified
location.

39. TargetMine.java Target mine data structure.

D. JABBER INSTANT MESSAGING

The im package is used for standard Jabber instant messaging. It also implements

the XTC Event Monitoring module (including the triggering of watch events and raising

of alerts).

Directory location: <CDRom>\auv\Workbench\src\im

S/N Filename Description

1. AgentConfig.java Data structure to store agent configuration that
has been loaded from an XML file.

2. Alert.java Data structure to store alert. AlertSound,
AlertURL and AlertVisual inherit from this class.

3. AlertSound.java Data structure for Sound Alerts, e.g., <Alert
type="sound" src="sound/beep.au"/>.

4. AlertURL.java Data structure for Hyperlink Alerts, e.g., <Alert
type="url"
src="http://www.google.com"/>

166

5. AlertVisual.java Data structure for Visual Alerts, e.g., <Alert
type="visual" src="image/mine.gif"/>

6. IMConfig.java Instant messaging session object.

7. Monitor.java Event monitoring criteria for Jabber messages.

8. UIAgent.java Event Monitoring/Jabber Instant Messaging User
Interface.

9. WatchEvent.java Data structure to store Watch Event and its
corresponding alerts/actions.

E. WEB

The web server module is implemented in the web package.

Directory location: <CDRom>\auv\Workbench\src\web

S/N Filename Description

1. HandleRequest.java Thread to handle incoming web server requests.

2. HTTPServer.java Web server to receive HTTP requests.

3. PostForm.java HTTP POST data structure.

4. RequestHTTP.java Processing of incoming web server requests.

F. UTILITIES

Common utilities and procedures are kept in util package.

Directory location: <CDRom>\auv\Workbench\src\util

S/N Filename Description

1. AgentPayload.java Data structure to store binary file data in XHTML
portion of Jabber message.

2. FileFilterEx.java Define a file filter (extension, description) in drop-
down combo-box

3. FontDialog.java Selection of font type or allow typed-in text string,
e.g., used in drawing application.

4. IconFileView.java Display an icon for a particular file types.

5. ImageDisplay.java Image viewer for the following formats: BMP,
GIF, PNG, JPEG and SVG (using Batik).

6. NumericInputHandler.java To restrict the no. of characters permitted in the
JTextField.

7. SortedList.java Sorted JList component.

8. SplashScreen.java Splash screen.

9. SystemMedia.java System Utilities to manipulate media files e.g.,

167

S/N Filename Description

sound.

10. SystemUtil.java System Utilities to perform file copy, extract file
name, directory, name only, property
management and screen-capture.

11. SystemUtilX.java Extra System Utilities to perform base-64
encoding & decoding, ZIP, GZIP and HTTP file
retrieval

G. LIBRARIES
List of required libraries provided from external sources.

Directory location: <CDRom>\auv\Workbench\lib

S/N Library Version Filename Description

1. Apache Ant 1.6.0 ant.jar, optional.jar,
xercesImpl.jar, xml-apis.jar

Java-based build tool.

2. Apache SOAP 2.3.1 soap.jar Base-64 encoding and
decoding.

3. Apache Xerces 2.5.0 xmlParserAPIs.jar, xml-
apis.jar, xercesImpl.jar

XML parsing.

4. Apache Xalan 2.5.0 xalan.jar XML transformation,

5. Batik 1.5.0 batik-awt-util.jar, batik-
bridge.jar, batik-css.jar, batik-
dom.jar, batik-ext.jar, batik-
gvt.jar, batik-parser.jar, batik-
script.jar, batik-svg-dom.jar,
batik-svggen.jar, batik-
swing.jar, batik-util.jar, batik-
xml.jar, js.jar

A Java-based toolkit for
apps that want to use
images in the SVG format
for viewing, creation and
manipulation.

6. Extensible Java
3D

M8 aviatrix3d-all.jar, gnu-regexp-
1.0.8.jar, httpclient.jar, j3d-org-
images.jar, j3d-org.jar,
Jama.jar, js.jar, JXInput.jar,
uri.jar, vlc_uri.jar, vrml97.jar,
xj3d-all.jar

Display of 3D VRML and
X3D models

7. Jivesoftware
SMACK APIs

1.2.1 smack.jar, smackx.jar. XMPP communications.

8. dis-java-vrml - dis-java-vrml.jar Distributed Interactive
Simulation.

168

H. CONFIGURATION FILE
The AUV Workbench configuration file,

AUVWorkbenchConfiguration.xml, is located in directory

<CDRom>\auv\Workbench\bin.

169

APPENDIX D. AUV WORKBENCH DEVELOPER AND USER
GUIDE

A. SETUP
This document explains how to install the current version (as of March, 2004) of

the AUV Workbench application. This setup procedure assumes the user is running in a

Windows environment without any of the needed components installed.

1. Download and install Sun Java SDK 1.4.2 (Available at

http://java.sun.com/j2se/1.4.2/download.html. Accessed on 15 February 2004). Ensure

that "JAVA_HOME" is set.

2. Download and install Sun J3D API 1.3.1 (Available at

http://java.sun.com/products/java-media/3D/download.html. Accessed on 15 February

2004).

3. Download and install ANT 1.6.0 or above. This is required to build the

AUV Workbench application. (Available at http://ant.apache.org. Accessed on 15

February 2004).

4. Download and install Distributed Interactive Simulation module. Ensure

that "dis-java-vrml.jar" (only file required) is installed in "C:\vrtp" and it is set in the

"CLASSPATH".

5. Download and unzip AUV Workbench application (source and

executable) into directory "C:\auv\Workbench".

6. Download and install list of applications and tools in Section C.

B. HOW TO RUN IT

By default, the AUV Workbench application shall be located in

C:\auv\Workbench. To run it, go to C:\auv\Workbench\bin directory and

double-click on run.bat.

170

C. HOW TO COMPILE IT
To compile and build the AUV Workbench application, go to

C:\auv\Workbench\ directory and double-click on antbuild.bat.

D. TOOLS AND APPLICATIONS
List of tools and useful applications:

S/N Name Version Description Available at

1. jEdit 4.1 Java text editor. http://www.jedit.org

2. Mozilla 1.6 Internet browser. http://www.mozilla.org

3. ParallelGraphics

Cortona

4.2 ParallelGraphics

browser VRML plugin.

http://www.parallelgraphics.com/products/cortona

4. Rhymbox 1.6 Jabber instant

messaging client.

http://www.rhymbox.com

 ParallelGraphics

VrmlPad

2.0 Vrml editor. http://www.parallelgraphics.com/products/vrmlpad

5. X3D Edit 2.4 X3D Graphics editor. http://www.web3d.org

6. Xj3D M8 Java-based VRML and

X3D loader.

http://www.xj3d.org

E. FREQUENTLY ASKED QUESTIONS (FAQ)

1. Unable to Start AUV Application

• Install Java JDK 1.4.2 .

• Install Java 3D .

• Go to AUV's "\bin" directory, double-click on "run.bat".

• List of files that are required by Java3D:

• J3D.dll, J3DUtils.dll, j3daudio.dll located in

%JAVA_HOME/jre/bin.

171

• vecmath.jar, j3dcore.jar, j3dutils.jar, j3daudio.jar located in

%JAVA_HOME%/jre/lib/ext.

F. COMPONENT CHART

Figure 122. Main Application User Interface.

172

Figure 123. 2D Mission Planning and 3D Visualization User Interface.

Figure 124. Execution and Hydro-Dynamics User Interface.

173

Figure 125. Font Dialog User Interface.

Figure 126. Application Toolbar.

174

Figure 127. Customized Jabber Client – Message Settings Module.

Figure 128. Customized Jabber Client – Message Send Module.

175

Figure 129. Customized Jabber Client – Message Send Receive.

Figure 130. Web Server.

176

THIS PAGE INTENTIONALLY LEFT BLANK

177

APPENDIX E. PROCEDURE TO PACKAGE BINARY DATA

//--
/**
 * base64 encode data from a file and create XML Document
 * perform zipping based on file formats (see SystemUtil.fileCanZip)
 *
 * @param sTagName tag name to be used
 * @param lstAP list of AgentPayload objects
 * (file name, description & URLs)
 * @param flagZip whether to gzip zippable files
 * @return created XML document
 */
public static org.w3c.dom.Document encodeDataToXML(String sTagName,
 ArrayList lstAP,
 boolean flagZip) {
 org.w3c.dom.Document xmlDoc = null;
 org.w3c.dom.Element eWrapper = null;
 org.w3c.dom.Element ePayload = null;
 org.w3c.dom.Element eComment = null;
 org.w3c.dom.Element eURL = null;
 boolean fZipit = false; // false; //
 boolean fCdata = false; // false; //
 int numPayload = 0;

 AgentPayload objAP = null;
 String srcFile = "";
 String sDesc = "";
 String arrURL[];

 if (sTagName.length()>0) { // root to append <AgentPayload> elements
 //Create an XML Document
 try {
 DocumentBuilderFactory dbFactory =
 DocumentBuilderFactory.newInstance();
 DocumentBuilder docBuilder = dbFactory.newDocumentBuilder();
 xmlDoc = docBuilder.newDocument();
 } catch(Exception ex) {
 System.out.println("encodeDataToXML() Error " + ex.getMessage());
 }
 // <AgentJabber> wrapper around 1 or many <AgentPayload> tags
 eWrapper = xmlDoc.createElement(sTagName);

 // loop through list of AgentPayload objects
 for (int iAP=0; iAP<lstAP.size(); iAP++) {
 objAP = (AgentPayload) lstAP.get(iAP);
 srcFile = objAP.getFilepath();
 sDesc = objAP.getDesc();
 arrURL = objAP.getURLs();

 if (srcFile.length()>0) {
 // check whether file is zippable
 fZipit = SystemUtil.fileCanZip(srcFile);

178

 try {
 byte[] originalBytes = null;
 byte[] zippedBytes = null;

 originalBytes = SystemUtil.fileRead(srcFile);
 if (originalBytes.length<=DEFAULT_PAYLOAD_SIZE) {
 fCdata = true;
 }
 //--
 // perform Gzip if file format is zippable & flagZip is SET
 if (fZipit && flagZip) {
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 GZIPOutputStream zos = new GZIPOutputStream(baos);
 zos.write(originalBytes);
 zos.flush();
 zos.finish();
 zos.close();

 zippedBytes = baos.toByteArray();

 // determine whether the data is too big to be packaged within
 // the CDATA section of the JABBER message
 // It is possible to produce a ZIP file that is bigger than
 // the original file size, if so, do not use ZIPPed data
 if (zippedBytes.length>originalBytes.length)
 fZipit = false;
 else if (zippedBytes.length<=DEFAULT_PAYLOAD_SIZE) {
 fCdata = true;
 }
 }
 // load through list of files
 // file payload
 ePayload = xmlDoc.createElement(TAG_AGENT_PAYLOAD);

 // set attributes in element
 ePayload.setAttribute(ATTR_FILENAME,
 SystemUtil.extractFileName(srcFile)); // original filename
 ePayload.setAttribute(ATTR_CONTENT_TRANSFER_ENCODING,
 "base-64"); // encoding technique defaulted to base-64
 ePayload.setAttribute(ATTR_DESC, sDesc); // description
 ePayload.setAttribute(ATTR_TIMESTAMP,
 SystemUtil.getDateTime14()); // time-stamp
 ePayload.setAttribute(ATTR_CHECKSUM,
 "1234567"); // checksum not implemented yet
 ePayload.setAttribute(ATTR_FILESIZE,
 Long.toString(SystemUtil.fileSize(srcFile))); //file size

 // if performed Gzip, then set "content-type"
 // atribute accordingly
 // store base-64 encoded data in CDATA section
 if (fZipit && flagZip) {
 ePayload.setAttribute(ATTR_CONTENT_TYPE,
 "application/x-zip-compressed");
 if (fCdata)
 ePayload.appendChild(
 xmlDoc.createCDATASection(Base64.encode(zippedBytes)));

179

 else
 ePayload.appendChild(xmlDoc.createCDATASection(""));
 }
 else {
 ePayload.setAttribute(ATTR_CONTENT_TYPE,
 SystemUtil.getContentTypeFromName(srcFile));
 if (fCdata)
 ePayload.appendChild(
 xmlDoc.createCDATASection(Base64.encode(originalBytes)));
 else
 ePayload.appendChild(xmlDoc.createCDATASection(""));
 }
 // append list of URLs e.g.
 // <url>http://server1/GAMMA.bmp</url>
 // <url>http://server2/GAMMA.bmp</url>
 // <url>http://server3/GAMMA.bmp</url>
 if ((arrURL!=null) && (arrURL.length>0)) {
 for (int i=0; i<arrURL.length; i++) {
 if (arrURL[i].length()>0) {
 eURL = xmlDoc.createElement(TAG_URL);
 eURL.appendChild(xmlDoc.createTextNode(arrURL[i]));
 ePayload.appendChild(eURL);
 }
 }
 }
 // add <AgentPayload> to <AgentJabber>
 eWrapper.appendChild(
 xmlDoc.createComment("Payload "+ (++numPayload)));
 eWrapper.appendChild(ePayload);
 } catch (IOException e) {
 writeErr("encodeDataToXML() Error " + e.getMessage());
 return null;
 }
 }
 else
 return null;
 } // loop through list of <AgentPayload> objects

 // add wrapper to XML document
 xmlDoc.appendChild(eWrapper);
 return xmlDoc;
 }
 else
 return null;
} // encodeDataToXML

Figure 131. Procedure to encode binary data to XML

180

//---
/**
 * read in XML data from a file or a string
 * and search for a particular tag,
 * base-64 decode XML string and save as a file.
 * Note:
 * if destination filename is specified, the filename in the tag attribute
 * is used
 * <AgentJabber filename="hello.bmp">
 *
 * CDATA maybe kept empty if the file size is too big.
 * To retrieve the file from
 * storage location, parse through list of URLs
 * and perform HTTP GET or FTP GET.
 * FTP GET is not implemented yet.
 *
 * @param srcXml source XML file or string
 * @param destFile destination output file, attribute value used if empty
 * @param sTagName tag name to be used
 * @param bFile true if read from file, otherwise it is a string
 * @return list of destination filenames saved to
 * @throws IOException XML exception error
 */
public static ArrayList decodeXMLToData(String srcXml,
 String destFile,
 String sTagName,
 boolean bFile) throws IOException {
 boolean fUnZipit = false;

 String valFileName = "";
 String valDesc = "";
 String valTimeStamp = "";
 String valContentType = "";
 String valContentEncode = "";
 long valFileSize = 0;
 long valCheckSum = 0;
 String destDir = "./";

 // determine the destination directory to save the files to
 if (new File(getDestDir()).isDirectory()) {
 destDir = getDestDir();
 }

 // list of AgentPayload objects
 ArrayList filesDest = new ArrayList();
 ArrayList lstURL = new ArrayList();

 if ((srcXml.length()>0) && (sTagName.length()>0)) {
 // read in XML data and create XML document
 org.w3c.dom.Document xmldoc = null;
 if (bFile)
 xmldoc = getXMLDocFromFile(srcXml);
 else
 xmldoc = getXMLDocFromString(srcXml);

 // go to wrapper tag e.g. <AgentJabber>

181

 NodeList nlWrapper = xmldoc.getElementsByTagName(sTagName);
 for (int idx = 0; idx <nlWrapper.getLength(); idx++) {
 Node child = nlWrapper.item(idx);
 // get list of child nodes under wrapper
 ArrayList cnWrapper = (ArrayList) getTargetChildNodes(
 child, new String [] {TAG_AGENT_PAYLOAD});
 for (Iterator i=cnWrapper.iterator(); i.hasNext();) {
 Node level1 = (Node) i.next();
 String nChild = level1.getNodeName(); // child nodes

 if (nChild.equalsIgnoreCase(TAG_AGENT_PAYLOAD)) {
 Node nPayload = level1;

 try {
 // <AgentJabber filename="hello.bmp">...,
 // variable 'attrFileName' return "hello.bmp"
 if (nPayload!=null) {

 // file name
 valFileName = nPayload.getAttributes().
 getNamedItem(ATTR_FILENAME).getNodeValue();

 // file description
 valDesc = nPayload.getAttributes().
 getNamedItem(ATTR_DESC).getNodeValue();

 // time stamp
 valTimeStamp = nPayload.getAttributes().
 getNamedItem(ATTR_TIMESTAMP).getNodeValue();

 // file size
 try {
 valFileSize = Long.parseLong(nPayload.getAttributes().
 getNamedItem(ATTR_FILESIZE).getNodeValue());
 }
 catch (Exception ex) {
 valFileSize = 0;
 }

 // check sum
 try {
 valCheckSum = Long.parseLong(nPayload.getAttributes().
 getNamedItem(ATTR_CHECKSUM).getNodeValue());
 }
 catch (Exception ex) {
 valCheckSum = 0;
 }

 // content encoding
 valContentEncode = nPayload.getAttributes().
 getNamedItem(ATTR_CONTENT_TRANSFER_ENCODING).getNodeValue();

 // content type
 valContentType = nPayload.getAttributes().
 getNamedItem(ATTR_CONTENT_TYPE).getNodeValue();

182

 // determine whether decompression is necessary based on the
 // "content-type" attribute
 if (valContentType.equalsIgnoreCase(
 "application/x-zip-compressed"))
 fUnZipit = true;

 // if destination filename is specified,
 // the filename in the tag attribute is used
 destFile = destDir + valFileName;
 }
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 //---
 // get list of URLs
 lstURL.clear();
 String strURL = "";
 ArrayList clPayload = (ArrayList)
 getTargetChildNodes(nPayload, new String [] {TAG_URL});
 for (Iterator ii=clPayload.iterator(); ii.hasNext();) {
 Node childPayload = (Node) ii.next();
 if (childPayload.getNodeName().equalsIgnoreCase(TAG_URL)) {
 try {
 strURL = childPayload.getFirstChild().getNodeValue();
 lstURL.add(strURL);
 }
 catch (Exception ex) { // set to default directory
 strURL = "";
 }
 } // within "url" tag
 } // loop "AgentPayload" children
 //---
 // get CDATA value from element, note "<![CDATA[...]]>"
 // are automatically stripped
 // if (nPayload.getFirstChild().getNodeValue()!=null) {
 // something in CDATA
 if (nPayload.getFirstChild().getNodeType()==
 nPayload.CDATA_SECTION_NODE) { // CDATA node?
 StringBuffer binaryData = new
 StringBuffer(nPayload.getFirstChild().getNodeValue());

 // perform base64 decoding
 byte[] buffer = Base64.decode(binaryData.toString());

 if (fUnZipit) {
 ByteArrayInputStream bais = new ByteArrayInputStream(buffer);
 GZIPInputStream zis = new GZIPInputStream(bais);
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 int c = -1;
 while ((c = zis.read()) != -1) {
 baos.write(c);
 }
 baos.flush();

 buffer = baos.toByteArray();

183

 }
 else {
 writeLn("No unzipping required.");
 }

 // write out data to predefined filename provided a filename
 if (destFile.length()>0) {
 File fDest = new File(destFile);
 writeLn("writing CDATA to ["+ fDest.getAbsolutePath() +"]");
 BufferedOutputStream bos = new BufferedOutputStream(
 new FileOutputStream(fDest));
 bos.write(buffer);
 bos.close();
 }
 }
 else { // no CDATA available, retrieve from URLs
 for (int j=0; j<lstURL.size(); j++) {
 strURL = (String) lstURL.get(j);
 if (strURL.length()>0) {
 //---
 // HTTP/web server
 if (strURL.toLowerCase().startsWith("http://")) {
 // e.g. http://www.mango.com/3D.svg
 String retFile = urlGetFile(strURL, destFile, "");
 if (retFile.length()>0) {// downloaded file
 destFile = retFile;
 break;
 }
 }
 //---
 // FTP server
 else if (strURL.toLowerCase().startsWith("ftp://")) {
 // e.g. ftp://ftp.mango.com/3D.svg
 // destFile = destDir + "FTP_GET";
 }
 //---
 // Local/networked file server/location
 else {
 // e.g. ../../../fruit/3D.svg, \\terra\fruit\3D.svg?

 File urlFile = new File(strURL);
 // check that the file can be found
 if (urlFile.exists()) {
 if (SystemUtil.filecopy(strURL, destFile))
 break;
 }
 }
 //---
 }
 } // loop thru' list of URLs
 } // no CDATA available, get from storage server/location
 } // within "AgentPayload"
 String arrURL[] = (String[]) lstURL.toArray(new String[0]);
 AgentPayload agtP = new AgentPayload(destFile, valDesc,
 valContentEncode, valContentType,

184

 valTimeStamp,
 valFileSize, valCheckSum,
 arrURL);
 filesDest.add(agtP);
 } // loop "AgentJabber" children, looking for "AgentPayload"
 } // within "AgentJabber" tag

 return filesDest;
 // for statistical purposes
 /*
 double readBytes = buffer.length;
 double totalChars = binaryData.toString().length();
 System.out.println("Encoded " + readBytes + " bytes using " +
 totalChars + " characters for an average length of " +
 totalChars/readBytes + " characters.");
 */
 }
 else
 return null;
} // decodeXMLToData

Figure 132. Procedure to decode binary data to XML

185

APPENDIX F. GNS.JAVA

The Java class used to convert GEOName Server (GNS) ASCII data files to XML

format.
//---
/**
 * Filename : GNS.java
 * Description : GEOnet Names Server (GNS)
 * requires Apache Xerces and util.SystemUtil
 *
 * e.g. // convert text-based GNS format to XML form
 * GNS.convertTextToXML("C:/test/sn.txt");
 *
 * Created Date : 29 February 2004
 * Revised Date : 29 February 2004
 * Course : Thesis
 * Program : GNS Object and XML converter
 * Compiler : JDK 1.4.2 onwards
 * Platform : Windows 2000/Windows XP
 * @author Lee, Chin Siong Daryl
 * @version 1.0
 */
//---
package main;
import java.io.*;
import java.util.*;

// JAXP packages
import javax.xml.parsers.*;
import javax.xml.transform.*;
import javax.xml.transform.stream.*;

import org.apache.xml.serialize.*;
import org.w3c.dom.*;
import org.xml.sax.*;

public class GNS {
 public static String TAG_GNS = "GNS";
 public static String ATTR_CTRY = "ctry";
 public static String ATTR_NUMREC = "numRecords";

 public static String TAG_FEATURE = "FEATURE";
 public static String ATTR_LAT = "lat";
 public static String ATTR_LONG = "long";
 public static String ATTR_DMS_LAT = "dmsLat";
 public static String ATTR_DMS_LONG = "dmsLong";
 public static String ATTR_UTM = "utm";
 public static String ATTR_JOG = "jog";
 public static String ATTR_GENERIC = "generic";
 public static String ATTR_SHORT_FORM = "shortForm";
 public static String ATTR_SORT_NAME = "sortName";
 public static String ATTR_FULL_NAME = "fullName";
 public static String ATTR_FULL_NAME_ND = "fullNameND";

186

 public static String ATTR_MODIFY_DATE = "modifyDate";
 public static String ATTR_RC = "rc";
 public static String ATTR_UFI = "ufi";
 public static String ATTR_UNI = "uni";
 public static String ATTR_FC = "fc";
 public static String ATTR_DSG = "dsg";
 public static String ATTR_PC = "pc";
 public static String ATTR_ADM1 = "adm1";
 public static String ATTR_ADM2 = "adm2";
 public static String ATTR_CC1 = "cc1";;
 public static String ATTR_CC2 = "cc2";
 public static String ATTR_DIM = "dim";
 public static String ATTR_NT = "nt";
 public static String ATTR_LC = "lc";

 String _sRC;
 String _sUFI;
 String _sUNI;
 String _sLAT;
 String _sLONG;
 String _sDMS_LAT;
 String _sDMS_LONG;
 String _sUTM;
 String _sJOG;
 String _sFC;
 String _sDSG;
 String _sPC;
 String _sCC1;
 String _sADM1;
 String _sADM2;
 String _sDIM;
 String _sCC2;
 String _sNT;
 String _sLC;
 String _sSHORT_FORM;
 String _sGENERIC;
 String _sSORT_NAME;
 String _sFULL_NAME;
 String _sFULL_NAME_ND;
 String _sMODIFY_DATE;

 public GNS(String sRC,
 String sUFI,
 String sUNI,
 String sLAT, String sLONG,
 String sDMS_LAT, String sDMS_LONG,
 String sUTM, String sJOG,
 String sFC, String sDSG,
 String sPC, String sCC1,
 String sADM1, String sADM2,
 String sDIM, String sCC2,
 String sNT, String sLC,
 String sSHORT_FORM,
 String sGENERIC, String sSORT_NAME,
 String sFULL_NAME,
 String sFULL_NAME_ND, String sMODIFY_DATE) {
 _sRC = sRC;

187

 _sUFI = sUFI;
 _sUNI = sUNI;
 _sLAT = sLAT;
 _sLONG = sLONG;
 _sDMS_LAT = sDMS_LAT;
 _sDMS_LONG = sDMS_LONG;
 _sUTM = sUTM;
 _sJOG = sJOG;
 _sFC = sFC;
 _sDSG = sDSG;
 _sPC = sPC;
 _sCC1 = sCC1;
 _sADM1 = sADM1;
 _sADM2 = sADM2;
 _sDIM = sDIM;
 _sCC2 = sCC2;
 _sNT = sNT;
 _sLC = sLC;
 _sSHORT_FORM = sSHORT_FORM;
 _sGENERIC = sGENERIC;
 _sSORT_NAME = sSORT_NAME;
 _sFULL_NAME = sFULL_NAME;
 _sFULL_NAME_ND = sFULL_NAME_ND;
 _sMODIFY_DATE = sMODIFY_DATE;
 } // GNS

 public String getRC() { return _sRC; } // getRC()
 public String getUFI() { return _sUFI; } // getUFI()
 public String getUNI() { return _sUNI; } // getUNI
 public String getLAT() { return _sLAT; } // getLAT
 public String getLONG() { return _sLONG; } // getLONG
 public String getDMS_LAT() { return _sDMS_LAT; } // getDMS_LAT
 public String getDMS_LONG() { return _sDMS_LONG; } // getDMS_LONG
 public String getUTM() { return _sUTM; } // getUTM
 public String getJOG() { return _sJOG; } // getJOG
 public String getFC() { return _sFC; } // getFC
 public String getDSG() { return _sDSG; } // getDSG
 public String getPC() { return _sPC; } // getPC
 public String getCC1() { return _sCC1; } // getCC1
 public String getADM1() { return _sADM1; } // getADM1
 public String getADM2() { return _sADM2; } // getADM2
 public String getDIM() { return _sDIM; } // getDIM
 public String getCC2() { return _sCC2; } // getCC2
 public String getNT() { return _sNT; } // getNT
 public String getLC() { return _sLC; } // getLC
 public String getSHORT_FORM() { return _sSHORT_FORM; } // getSHORT_FORM
 public String getGENERIC() { return _sGENERIC; } // getGENERIC
 public String getSORT_NAME() { return _sSORT_NAME; } // getSORT_NAME
 public String getFULL_NAME() { return _sFULL_NAME; } // getFULL_NAME
 public String getFULL_NAME_ND() { return _sFULL_NAME_ND; } //
getFULL_NAME_ND
 public String getMODIFY_DATE() { return _sMODIFY_DATE; } //
getMODIFY_DATE

 public String toString() {
 return getLAT() +", "+ getLONG() +", "+ getFULL_NAME()+", "+
getMODIFY_DATE();

188

 } // toString
 //---
 /**
 * load from text-based GNS data file and save to XML
 * (same filename, different extension)
 * @param srcFile GNS text file
 * @return true=successful, false if failed
 */
 public static boolean convertTextToXML(String srcFile) {
 if (new File(srcFile).exists()) {
 try {
 FileInputStream fis = new FileInputStream(srcFile);
 BufferedReader dis = new BufferedReader(new InputStreamReader(fis));
 int count = 0;
 int countError = 0;
 String sBuf;
 String arrS[];
 ArrayList lst = new ArrayList();

 while ((sBuf = dis.readLine()) != null) {
 arrS = sBuf.split("\t");
 // debugging writeLn("["+ arrS.length +"]");
 if (count>0) { // skip header
 lst.add(new GNS(arrS[0], arrS[1], arrS[2], arrS[3], arrS[4],
 arrS[5], arrS[6], arrS[7], arrS[8], arrS[9],
 arrS[10], arrS[11], arrS[12], arrS[13],
arrS[14],
 arrS[15], arrS[16], arrS[17], arrS[18],
arrS[19],
 arrS[20], arrS[21], arrS[22], arrS[23], arrS[24]
));
 }
 count++;
 }
 writeLn("No. of GNS records read from ["+ srcFile +"] is "+ count);
 //---
 // save as XML
 String fXML = util.SystemUtil.changeFileExt(srcFile, ".xml");
 saveAsXML(lst, fXML);

 writeLn("Generated GNS XML file ["+ fXML +"]");

 return true;
 } catch(Exception e) {
 writeErr("File error: " + e.getMessage() + " on file " + srcFile);
 }
 }
 return false;
 } // convertTextToXML
 //---
 /**
 * create an XML document from list of GNS records
 * @param attrCtry abbreviated country name
 * @param lst list of GNS objects
 * @return XML document
 */
 private static Document createXMLDocument(String attrCtry, ArrayList lst) {

189

 Element main;
 Element root;
 Element tFeature = null;
 Document _xmlDoc = null;

 try {
 //Create a XML Document
 DocumentBuilderFactory dbFactory =
DocumentBuilderFactory.newInstance(); //
DocumentBuilderFactoryImpl.newInstance();
 DocumentBuilder docBuilder = dbFactory.newDocumentBuilder();
 _xmlDoc = docBuilder.newDocument();
 } catch(Exception e) {
 System.out.println("Error " + e);
 }
 // add stylesheet
// Map PITable = new HashMap(2,(float)0.5); //try this and see what
happens to the output
 //---
 root = _xmlDoc.createElement(TAG_GNS);
 root.setAttribute(ATTR_CTRY, attrCtry); // which country
 root.setAttribute(ATTR_NUMREC, Integer.toString(lst.size()));
 for (int i=0; i<lst.size(); i++) {
 tFeature = _xmlDoc.createElement(TAG_FEATURE);
 tFeature.setAttribute(ATTR_LAT, ((GNS) lst.get(i)).getLAT());
 tFeature.setAttribute(ATTR_LONG, ((GNS) lst.get(i)).getLONG());
 tFeature.setAttribute(ATTR_DMS_LAT, ((GNS) lst.get(i)).getDMS_LAT());
 tFeature.setAttribute(ATTR_DMS_LONG, ((GNS) lst.get(i)).getDMS_LONG()
);
 tFeature.setAttribute(ATTR_UTM, ((GNS) lst.get(i)).getUTM());
 tFeature.setAttribute(ATTR_JOG, ((GNS) lst.get(i)).getJOG());
 tFeature.setAttribute(ATTR_GENERIC, ((GNS) lst.get(i)).getGENERIC());
 tFeature.setAttribute(ATTR_SHORT_FORM, ((GNS)
lst.get(i)).getSHORT_FORM());
 tFeature.setAttribute(ATTR_SORT_NAME, ((GNS) lst.get(i)).getSORT_NAME()
);
 tFeature.setAttribute(ATTR_FULL_NAME, ((GNS) lst.get(i)).getFULL_NAME()
);
 tFeature.setAttribute(ATTR_FULL_NAME_ND, ((GNS)
lst.get(i)).getFULL_NAME_ND());
 tFeature.setAttribute(ATTR_MODIFY_DATE, ((GNS)
lst.get(i)).getMODIFY_DATE());
 tFeature.setAttribute(ATTR_RC, ((GNS) lst.get(i)).getRC());
 tFeature.setAttribute(ATTR_UFI, ((GNS) lst.get(i)).getUFI());;
 tFeature.setAttribute(ATTR_UNI, ((GNS) lst.get(i)).getUNI());
 tFeature.setAttribute(ATTR_FC , ((GNS) lst.get(i)).getFC());
 tFeature.setAttribute(ATTR_DSG, ((GNS) lst.get(i)).getDSG());
 tFeature.setAttribute(ATTR_PC, ((GNS) lst.get(i)).getPC());
 tFeature.setAttribute(ATTR_ADM1, ((GNS) lst.get(i)).getADM1());
 tFeature.setAttribute(ATTR_ADM2, ((GNS) lst.get(i)).getADM2());
 tFeature.setAttribute(ATTR_CC1, ((GNS) lst.get(i)).getCC1());
 tFeature.setAttribute(ATTR_CC2, ((GNS) lst.get(i)).getCC2());
 tFeature.setAttribute(ATTR_DIM, ((GNS) lst.get(i)).getDIM());
 tFeature.setAttribute(ATTR_NT, ((GNS) lst.get(i)).getNT());
 tFeature.setAttribute(ATTR_LC, ((GNS) lst.get(i)).getLC());

190

 root.appendChild(tFeature);
 // debugging writeLn(((GNS) lst.get(i)).toString());
 }

 //add to the root Element
 _xmlDoc.appendChild(root);

 return _xmlDoc;
 } // createXMLDocument
 //---
 /**
 * save GNS data in XML form
 * @param lstGNS list of GNS objects
 * @param filename file to be saved to
 */
 public static void saveAsXML(ArrayList lstGNS, String filename) {
 try {
 Document doc =
createXMLDocument(util.SystemUtil.extractFileNameOnly(filename),
 lstGNS);
 if (doc!=null) {
 OutputFormat outputFormat = new OutputFormat(doc);
 outputFormat.setLineWidth(OutputFormat.Defaults.LineWidth);
 outputFormat.setIndent(OutputFormat.Defaults.Indent);

 XMLSerializer fileSerializer = new XMLSerializer(new
FileWriter(filename), outputFormat);
 fileSerializer.serialize(doc);
 }
 else {
 writeErr("unable to save XML to ["+ filename +"]");
 }
 }
 catch (IOException ioEx) {
 writeErr("Error " + ioEx);
 }
 } // saveScriptXML
 //---
 /**
 * write a error messgae to console
 * @param aStr line to be written to console
 */
 public static void writeErr(String aStr) {
 System.err.println(aStr);
 } // writeErr
 //---
 /**
 * write a line to console
 * @param aStr line to be written to console
 */
 public static void writeLn(String aStr) {
 System.out.println(aStr);
 } // writeLn
} // GNS

191

LIST OF REFERENCES

[Ant 2004] Apache Ant. http://ant.apache.org/faq.html Accessed on 15 January 2004.

[Ayala 2002] Miguel Arnaldo Ayala, “Execution Level Java Software and Hardware for
the NPS Autonomous Underwater Vehicle”, Master’s Thesis, Naval Postgraduate School,
Monterey, California, September 2002. Available at:
http://library.nps.navy.mil/uhtbin/cgisirsi/r3TGkbHCIu/99460007/523/3643 Accessed on
January 2004.

[Brutzman 1994] Brutzman, D.P., A Virtual World for an Autonomous Underwater
Vehicle, PhD Dissertation, Naval Postgraduate School, Monterey, California, December
1994. Available at: http://web.nps.navy.mil/~brutzman/dissertation/ Accessed on
January 2004.

[Brutzman 2004] Don Brutzman. X3D Sonar Visualization and Tactical Web Services for
Undersea Warfare (USW). Available at
http://www.movesinstitute.org/xmsf/projects/sonar-vis/NpsSonarVisualizationTda.ppt.
Accessed on February 2004.

[CML] Chemical Markup Language (CML). http://www.xml-cml.org/ Accessed on
February 2004.

[DAML] Defense Advanced Research Projects Agency (DARPA) Agent Markup
Language (DAML) for agents. http://www.daml.org/ Accessed on February 2004.

[Eclipse 2004] Eclipse Platform. http://www.eclipse.org. Accessed on January 2004.

[Ferber 1999] Ferber, J., Multi-Agent Systems, An Introduction to Distributed Artificial
Intelligence. Addison-Wesley, Harlow, England, 1999.

[Girard] Anouck Renee Girard. An Overview of Emerging results in Networked Multi-
Vehicle Systems.

[GeoML] Geography Markup Language to describe geographic information.
http://www.opengis.org Accessed on February 2004

[Gilles 1998] Gilles Fauconnier, Mark Turner. Conceptual Integration Networks.
Available at http://blending.standford.edu. Accessed on March 2004.

[Grunesien 2002] Adrien Gruneisen, Yann Henriet. 3D Model of the Aries Autonomous
Underwater Vehicle (AUV), JavaDoc for Dynamics, Software, AUV Mission-
Visualization, and AUV Dynamics Control Workbench in Matlab, Naval Postgraduate
School, Monterey, California, October 2002.

192

[Hawkins 2003] Darrin L. Hawkins, Barbara C. Van Leuvan, An XML-based Mission
Command Language for Autonomous Underwater Vehicles (AUVs), June 2003.
Available at: http://library.nps.navy.mil/uhtbin/cgisirsi/kMbLeal39E/99460007/523/4789

[Hiles 2003] John Hiles. “Cognitive Subjects and Operations: Putting Subjects into
Simulations; Moving Agents Out of their Simulation Box”. Available at
http://www.movesinstitute.org/openhouse2003slides/Hilesopenhouse2003.ppt

[Holden 1995] Holden, Michael J., “ADA Implementation of Concurrent Execution of
Multiple Tasks in the Strategic and Tactical Levels of the Rational Behavior Model for
the NPS Phoenix Autonomous Underwater Vehicle (AUV),” M.S. thesis, Naval
Postgraduate School, Monterey, California 93943, September, 1995. Available at,
http://www.cs.nps.navy.mil/research/auv/auv_thesisarchive.html

[Jabber 2004] Jabber. http://www.jabber.org Accessed on September 2003.

[JDK142] Java 2 Platform Standard Edition, v1.4.2 (J2SE). Available at
http://java.sun.com/j2se/1.4.2/download.html. Accessed on September 2004.

[JavaCodeConvention 1999] Java Coding Convention. Available at
http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html. Accessed on
March 2004.

[JEP] Jabber Enhancement Proposals. http://www.jabber.org/jeps/ Accessed on October
2003.

[JEP49] JEP-0049: Private XML Storage. http://www.jabber.org/jeps/jep-0049.html
Accessed on January 2004.

[JEP71] JEP-0071: XHTML-IM. http://www.jabber.org/jeps/jep-0049.html Accessed on
January 2004.

[JiveSoftware 2003] Jive Software open-source XMPP client library for instant
messaging and presence. http://www.jivesoftware.com/xmpp/smack/. Accessed on
September 2003.

[JMS] Sun Java Message Service. http://java.sun.com/products/jms/. Accessed on
October 2003.

[Mahmoud 2002] Qusay H. Mahmoud. Compressing and Decompressing Data using
Java. Accessed on February 2002.

[MathML] MathML for mathematics. http://www.w3.org/Math/ Accessed on February
2004.

[Mozilla 2004] Mozilla Project. http://www.mozilla.org/ Accessed on February 2004.

193

[MsMQ] Microsoft Message Queuing. www.microsoft.com/msmq/default.htm Accessed
on October 2003.

[Netbeans 2004] NetBeans Platform. http://www.netbeans.org. Accessed on January
2004.

[Oceans 2000] David B. Marco, Anthony J. Healey. Current Developments in
Underwater Vehicle Control and Navigation: The NPS ARIES AUV, 2000. Available at
http://web.nps.navy.mil/~me/healey/papers/Oceans2000.pdf

[OSI 2004] Open Source Initiative, Non-Profit Corporation, 2002, “Definition
and Rationale”, http://www.opensource.org (Accessed February 2004).

[Pentakalos 2001] Odysseas Pentakalos. Java Tip 117: Transfer binary data in an XML
document. http://www.javaworld.com/javaworld/javatips/jw-javatip117.html (Accessed
on January 2004).

[Polycarpou 2001] Marios M. Polycarpou. Ohio State University. Cooperative Control of
Distributed Multi-Agent Systems.

[RFC 821] RFC 821 - Simple Mail Transfer Protocol.
http://www.faqs.org/rfcs/rfc821.html (Accessed on December 2003).

[RFC 959] RFC959 - File Transfer Protocol.
http://www.w3.org/Protocols/rfc959/Overview.html or
http://www.faqs.org/rfcs/rfc959.html (Accessed on December 2003).

[RFC 1867] RFC 1867 - Form-based File Upload in HTML.
http://www.faqs.org/rfcs/rfc1867.html (Accessed on December 2003)

[RFC 2045] RFC 2045 (Base64 Encoding). http://www.ietf.org/rfc/rfc2045.txt (Accessed
on December 2003).

[RFC 2660] RFC 2660 (Secure HyperText Transfer Protocol)
http://www.ietf.org/rfc/rfc2660.txt. (Accessed on January 2004).

[RFC 2779] RFC2779 - Instant Messaging / Presence Protocol Requirements.
http://www.jabber.org/ietf/ (Accessed on January 2004).

[SFTP 2002] Secure FTP 101.
http://www.intranetjournal.com/articles/200208/se_08_14_02a.html (Accessed on
January 2004).

[Reimers 1995] Reimers, S. “Towards Internet Protocol Over Seawater: Forward Error
Correction Using Hamming Codes for Reliable Acoustic Telemetry”, MS Thesis, Naval

194

Postgraduate School, Monterey, California. September 1995.

[Rhymbox 2004] RhymBox Jabber Client - Instant Messaging For XMPP/Jabber.
http://www.rhymbox.com/. Accessed on 15 January 2004.

[Schema 2004] XML Schema. http://www.w3.org/XML/Schema Accessed on February
2004.

[SensorML] Sensor Markup Language (SensorML) for sensors.
http://vast.uah.edu/SensorML/ Accessed on February 2004.

[Serin 2003] Serin, E., “Design and Test of the Cross-Format Schema Protocol (XFSP)
for Networked Virtual Environment”, Master’s Thesis, Naval Postgraduate School,
Monterey, California, March 2003.

[Shankar 2002] Gowri Shankar. Embed binary data in XML documents three ways.
http://www-106.ibm.com/developerworks/xml/library/x-
binary/?open&l=136,t=gr,p=xb2b Accessed on February 2002.

[SVG 2004] Scalable Vector Graphics (SVG). http://www.w3.org/Graphics/SVG/.
Accessed on January 2004.

[Turner] Roy M. Turner. University of New Hampshire. Handling Unanticipated Events
in Single and Multiple AUV Systems.

[Turner 2002] Gilles Fauconnier, Mark Turner. The Way We Think: Conceptual
Blending and The Mind's Hidden Complexities.

[Websphere] IBM Websphere MQ. http://www-306.ibm.com/software/integration/wmq/

[Wheless] Glen H. Wheless. Old Dominion University. The Use of Collaborative Virtual
Environments in the Mine Countermeasures Mission.

[XMPP 2004] Extensible Messaging and Presence Protocol (XMPP).
http://xml.coverpages.org/xmpp.html. Accessed on December 2003.

 [XSL 2004] Extensible Stylesheet Language. http://www.w3.org/TR/NOTE-XSL.htm.
Accessed on February 2004.

[XML 1999] XML in 10 points, http://www.w3.org/XML/1999/XML-in-10-points
Accessed on January 2004.

[XML 2004] Extensible Markup Language (XML) 1.0 (Third Edition).
http://www.w3.org/TR/2004/REC-xml-20040204 Accessed on February 2004.

195

[XSLT 2004] Extensible Stylesheet Language Transformation.
http://www.w3.org/TR/xslt. Accessed on February 2004.

[Xalan 2004] Apache Xalan. http://xml.apache.org. Accessed on February 2004.

[X3D] Extensible 3D (X3D) Graphics. http://www.web3d.org/x3d.html Accessed on
February 2004.

[X3DHints 2004] X3D Scene Authoring Hints. Available at
http://www.web3d.org/TaskGroups/x3d/translation/examples/X3dSceneAuthoringHints.h
tml#NamingConventions. Accessed on September 2003.

[XJ3D 2004] The Xj3D Project. http://www.xj3d.org Accessed on February 2004.

[XTC 2004] Don Brutzman, Don McGregor, Daniel A. DeVos and Chin Siong Lee.
XML-based Tactical Chat (XTC): Requirements, Capabilities and Preliminary Progress,
January 2004. Available at
http://www.movesinstitute.org/xmsf/projects/XTC/XmlTacticalChat2004January28.pdf

196

THIS PAGE INTENTIONALLY LEFT BLANK

197

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Associate Professor Don Brutzman
Naval Postgraduate School
Monterey, California

4. Research Associate Curt Blais
Naval Postgraduate School
Monterey, California

5. Research Professor John Hiles
Naval Postgraduate School
Monterey, California

6. Associate Professor Tony Healey
Naval Postgraduate School
Monterey, California

7. Research Associate Jeff Weekley
Naval Postgraduate School
Monterey, California

8. Duane Davis, LCDR USN
Naval Postgraduate School
Monterey, California

